IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5877-d637247.html
   My bibliography  Save this article

Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems

Author

Listed:
  • Habib Benbouhenni

    (Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul 34481742, Turkey)

  • Nicu Bizon

    (Doctoral School, Polytechnic University of Bucharest, 313 SplaiulIndependentei, 060042 Bucharest, Romania
    Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
    ICSI Energy, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania)

Abstract

Traditional direct field-oriented control (DFOC) techniques with integral-proportional (PI) controllers have undesirable effects on the power quality and performance of variable speed contra-rotating wind power (CRWP) plants based on asynchronous generators (ASGs). In this work, a commanding technique based on the DFOC technique for ASG is presented on variable speed conditions to minimize the output power ripples and the total harmonic distortion (THD) of the grid current. A new DFOC strategy was designed based on third-order sliding mode (TOSM) control to minimize oscillations and the THD value of the current and active power of the ASG; the designed technique decreases the current THD from ASG and does not impose any additional undulations in different parts of ASG. The designed technique is simply implemented on traditional DFOC techniques in variable speed DRWP systems to ameliorate its effectiveness. Also, the results show that by using the designed TOSM controllers, in addition to regulating the active and reactive powers of the ASG-based variable speed CRWP system, the THD current and active power undulations of the traditional inverters can be minimized simultaneously, and the stator current became more like a sinusoidal form.

Suggested Citation

  • Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5877-:d:637247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yigeng Huangfu & Jiani Xu & Dongdong Zhao & Yuntian Liu & Fei Gao, 2018. "A Novel Battery State of Charge Estimation Method Based on a Super-Twisting Sliding Mode Observer," Energies, MDPI, vol. 11(5), pages 1-21, May.
    2. Kelkoul, Bahia & Boumediene, Abdelmadjid, 2021. "Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine," Energy, Elsevier, vol. 214(C).
    3. Abdelhakim Dendouga, 2020. "Conventional and Second Order Sliding Mode Control of Permanent Magnet Synchronous Motor Fed by Direct Matrix Converter: Comparative Study," Energies, MDPI, vol. 13(19), pages 1-14, September.
    4. Habib Benbouhenni & Nicu Bizon, 2021. "A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-17, July.
    5. Mohamed R. Kafi & Mohamed A. Hamida & Hicham Chaoui & Rabie Belkacemi, 2020. "Sliding Mode Self-Sensing Control of Synchronous Machine Using Super Twisting Interconnected Observers," Energies, MDPI, vol. 13(16), pages 1-19, August.
    6. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    7. Linyun Xiong & Penghan Li & Hao Li & Jie Wang, 2017. "Sliding Mode Control of DFIG Wind Turbines with a Fast Exponential Reaching Law," Energies, MDPI, vol. 10(11), pages 1-19, November.
    8. Xiaoning Shen & Jianxing Liu & Abraham Marquez & Wensheng Luo & Jose I. Leon & Sergio Vazquez & Leopoldo G. Franquelo, 2020. "A High-Gain Observer-Based Adaptive Super-Twisting Algorithm for DC-Link Voltage Control of NPC Converters," Energies, MDPI, vol. 13(5), pages 1-16, March.
    9. Yubo Liu & Junlong Fang & Kezhu Tan & Boyan Huang & Wenshuai He, 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM," Energies, MDPI, vol. 13(22), pages 1-18, November.
    10. Kening Li & Jianyong Cao & Fan Yu, 2013. "Study on the Nonsingular Problem of Fractional-Order Terminal Sliding Mode Control," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, August.
    11. Kamran Zeb & Tiago Davi Curi Busarello & Saif Ul Islam & Waqar Uddin & Kummara Venkata Guru Raghavendra & Muhammad Adil Khan & Hee-Je Kim, 2020. "Design of Super Twisting Sliding Mode Controller for a Three-Phase Grid-connected Photovoltaic System under Normal and Abnormal Conditions," Energies, MDPI, vol. 13(15), pages 1-21, July.
    12. Irfan Sami & Shafaat Ullah & Zahoor Ali & Nasim Ullah & Jong-Suk Ro, 2020. "A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based Wind Energy Conversion System," Energies, MDPI, vol. 13(9), pages 1-20, May.
    13. Saleh Mobayen & Farhad Bayat & Chun-Chi Lai & Asghar Taheri & Afef Fekih, 2021. "Adaptive Global Sliding Mode Controller Design for Perturbed DC-DC Buck Converters," Energies, MDPI, vol. 14(5), pages 1-12, February.
    14. Waqar Uddin & Kamran Zeb & Muhammad Adil Khan & Muhammad Ishfaq & Imran Khan & Saif ul Islam & Hee-Je Kim & Gwan Soo Park & Cheewoo Lee, 2019. "Control of Output and Circulating Current of Modular Multilevel Converter Using a Sliding Mode Approach," Energies, MDPI, vol. 12(21), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    2. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    3. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    4. Mohammad Hosein Sabzalian & Khalid A. Alattas & Fayez F. M. El-Sousy & Ardashir Mohammadzadeh & Saleh Mobayen & Mai The Vu & Mauricio Aredes, 2022. "A Neural Controller for Induction Motors: Fractional-Order Stability Analysis and Online Learning Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    2. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.
    3. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    4. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    5. Peng Gao & Guangming Zhang & Xiaodong Lv, 2021. "Model-Free Control Using Improved Smoothing Extended State Observer and Super-Twisting Nonlinear Sliding Mode Control for PMSM Drives," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Kamran Zeb & Muhammad Saqib Nazir & Iftikhar Ahmad & Waqar Uddin & Hee-Je Kim, 2021. "Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers," Energies, MDPI, vol. 14(9), pages 1-15, April.
    7. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    8. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    9. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    10. Saman Dadjo Tavakoli & Eduardo Prieto-Araujo & Enric Sánchez-Sánchez & Oriol Gomis-Bellmunt, 2020. "Interaction Assessment and Stability Analysis of the MMC-Based VSC-HVDC Link," Energies, MDPI, vol. 13(8), pages 1-19, April.
    11. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.
    12. Rok Pajer & Amor Chowdhury & Miran Rodič, 2019. "Control of a Multiphase Buck Converter, Based on Sliding Mode and Disturbance Estimation, Capable of Linear Large Signal Operation," Energies, MDPI, vol. 12(14), pages 1-26, July.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Mingfei Huang & Yongting Deng & Hongwen Li & Jing Liu & Meng Shao & Qiang Fei, 2021. "Torque Ripple Suppression of PMSM Based on Robust Two Degrees-of-Freedom Resonant Controller," Energies, MDPI, vol. 14(4), pages 1-22, February.
    15. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    16. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    17. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    18. Bo-Yu Luo & Ramadhani Kurniawan Subroto & Chang-Zhi Wang & Kuo-Lung Lian, 2022. "An Improved Sliding Mode Control with Integral Surface for a Modular Multilevel Power Converter," Energies, MDPI, vol. 15(5), pages 1-18, February.
    19. Habib Benbouhenni & Nicu Bizon & Ilhami Colak & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    20. Michał Gwóźdź & Łukasz Ciepliński, 2021. "An Algorithm for Calculation and Extraction of the Grid Voltage Component," Energies, MDPI, vol. 14(16), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5877-:d:637247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.