IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4887-d854893.html
   My bibliography  Save this article

Design and Modelling of Energy Conversion with the Two-Region Torque Control of a PMSM in an EV Powertrain

Author

Listed:
  • Grzegorz Sieklucki

    (Department of Power Electronics and Energy Control Systems, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Dawid Kara

    (Department of Electrical Engineering, Polytechnic Faculty, University of Applied Sciences in Tarnow, 33-100 Tarnów, Poland)

Abstract

This paper investigates the properties and design of energy conversion in an electric vehicle (EV) powertrain. Here, we combined the dynamics of vehicle motion with controlled electric propulsion, which is an EV powertrain. The control of two types of permanent magnet synchronous motors (PMSMs) was considered. An algorithm was developed for the determination of the static characteristics of two-region motor torque control. A constant torque and a constant power region were used in the powertrain of the EV. The design of the control system for the PMSM was considered in the d , q reference frame. A precise mechanical model of the EV and the determination of road loads is shown. The main results of this study were the selection of the PI controller parameters (in analytical form), which was carried out for the simplified motor model and then extended for the d , q model, and energy consumption during the WLTP standard driving cycle. The presented simulation results of the proposed control system with synchronous motors in the EV (Fisker Karma as an example) confirmed the approach taken for the selection of the controller. The presentation of the EV’s acceleration for an optimized powertrain, and hence its performance, is a novelty not found in other articles.

Suggested Citation

  • Grzegorz Sieklucki & Dawid Kara, 2022. "Design and Modelling of Energy Conversion with the Two-Region Torque Control of a PMSM in an EV Powertrain," Energies, MDPI, vol. 15(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4887-:d:854893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Zhou & Min Ai & Dongyang Sun & Ningzhi Jin & Xiaogang Wu, 2019. "Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Grzegorz Sieklucki, 2021. "Optimization of Powertrain in EV," Energies, MDPI, vol. 14(3), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    2. Hyunjae Lee & Gunbok Lee & Gildong Kim & Jingeun Shon, 2022. "Variable Incremental Controller of Permanent-Magnet Synchronous Motor for Voltage-Based Flux-Weakening Control," Energies, MDPI, vol. 15(15), pages 1-15, August.
    3. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    4. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    5. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    6. Aissam Riad Meddour & Nassim Rizoug & Patrick Leserf & Christopher Vagg & Richard Burke & Cherif Larouci, 2023. "Optimization of the Lifetime and Cost of a PMSM in an Electric Vehicle Drive Train," Energies, MDPI, vol. 16(13), pages 1-27, July.
    7. Li Yang & Fuzhao Yang & Weitao Sheng & Kun Zhou & Tianmin Huang, 2021. "Fuzzy Chaos Control of Fractional Order D-PMSG for Wind Turbine with Uncertain Parameters by State Feedback Design," Energies, MDPI, vol. 14(21), pages 1-15, November.
    8. Hyun-Jae Lee & Jin-Geun Shon, 2021. "Improved Voltage Flux-Weakening Strategy of Permanent Magnet Synchronous Motor in High-Speed Operation," Energies, MDPI, vol. 14(22), pages 1-15, November.
    9. Grzegorz Sieklucki & Sylwester Sobieraj & Józef Gromba & Raluca-Elena Necula, 2023. "Analysis and Approximation of THD and Torque Ripple of Induction Motor for SVPWM Control of VSI," Energies, MDPI, vol. 16(12), pages 1-22, June.
    10. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    11. Pedram Asef & Ramon Bargallo & Andrew Lapthorn & Davide Tavernini & Lingyun Shao & Aldo Sorniotti, 2021. "Assessment of the Energy Consumption and Drivability Performance of an IPMSM-Driven Electric Vehicle Using Different Buried Magnet Arrangements," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4887-:d:854893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.