IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1716-d341365.html
   My bibliography  Save this article

GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System

Author

Listed:
  • Chao Wu

    (School of Automation, Southeast University, Key Laboratory of Measurement and Control of CSE, Ministry of Education, Nanjing 210096, China)

  • Jun Yang

    (School of Automation, Southeast University, Key Laboratory of Measurement and Control of CSE, Ministry of Education, Nanjing 210096, China)

  • Qi Li

    (School of Automation, Southeast University, Key Laboratory of Measurement and Control of CSE, Ministry of Education, Nanjing 210096, China)

Abstract

This paper proposes a generalized proportional integral observer (GPIO) based nonlinear predictive control (NPC) for an interior permanent magnet synchronous motor (IPMSM) to improve the flux-weakening (FW) current control performance against the complex nonlinear cross-coupling terms and the IPMSM parameters’ variations. First, the IPMSM is remodeled to further analyze the FW control difficulties caused by such cross-coupling terms and parameters variations. Considering the parameters’ variations as a kind of disturbance, a GPIO is then designed to compensate for such disturbance. A GPIO-based NPC is finally designed to handle the nonlinear cross-coupling terms to obtain an optimized current control performance. Experiments on a digital signal processor (DSP) based IPMSM servo system validate the workability of the proposed control scheme.

Suggested Citation

  • Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1716-:d:341365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Zhou & Min Ai & Dongyang Sun & Ningzhi Jin & Xiaogang Wu, 2019. "Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Thanh Anh Huynh & Min-Fu Hsieh, 2018. "Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles," Energies, MDPI, vol. 11(6), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji-Chang Son & Myung-Ki Baek & Sang-Hun Park & Dong-Kuk Lim, 2021. "Improved Immune Algorithm Combined with Steepest Descent Method for Optimal Design of IPMSM for FCEV Traction Motor," Energies, MDPI, vol. 14(13), pages 1-12, June.
    2. Ji-Chang Son & Young-Rok Kang & Dong-Kuk Lim, 2020. "Optimal Design of IPMSM for FCEV Using Novel Immune Algorithm Combined with Steepest Descent Method," Energies, MDPI, vol. 13(13), pages 1-15, July.
    3. Zhuo Liu & Azeddine Houari & Mohamed Machmoum & Mohamed-Fouad Benkhoris & Tianhao Tang, 2020. "An Active FTC Strategy Using Generalized Proportional Integral Observers Applied to Five-Phase PMSG based Tidal Current Energy Conversion Systems," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavol Rafajdus & Valeria Hrabovcova & Pavel Lehocky & Pavol Makys & Filip Holub, 2018. "Effect of Saturation on Field Oriented Control of the New Designed Reluctance Synchronous Motor," Energies, MDPI, vol. 11(11), pages 1-10, November.
    2. Grzegorz Sieklucki & Dawid Kara, 2022. "Design and Modelling of Energy Conversion with the Two-Region Torque Control of a PMSM in an EV Powertrain," Energies, MDPI, vol. 15(13), pages 1-18, July.
    3. Armagan Bozkurt & Ahmet Fevzi Baba & Yusuf Oner, 2021. "Design of Outer-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-12, June.
    4. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    6. Marcin Jastrzębski & Jacek Kabziński, 2021. "Approximation of Permanent Magnet Motor Flux Distribution by Partially Informed Neural Networks," Energies, MDPI, vol. 14(18), pages 1-21, September.
    7. Zeyang Fan & Hong Yi & Jian Xu & Kun Xie & Yue Qi & Sailin Ren & Hongdong Wang, 2021. "Performance Study and Optimization Design of High-Speed Amorphous Alloy Induction Motor," Energies, MDPI, vol. 14(9), pages 1-19, April.
    8. Huimin Li & Shoudao Huang & Derong Luo & Jian Gao & Peng Fan, 2018. "Dynamic DC-link Voltage Adjustment for Electric Vehicles Considering the Cross Saturation Effects," Energies, MDPI, vol. 11(8), pages 1-22, August.
    9. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    10. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    11. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    12. Yang Sun & Shuhui Li & Malek Ramezani & Bharat Balasubramanian & Bian Jin & Yixiang Gao, 2019. "DSP Implementation of a Neural Network Vector Controller for IPM Motor Drives," Energies, MDPI, vol. 12(13), pages 1-17, July.
    13. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.
    14. Pedro P. C. Bhagubai & João G. Sarrico & João F. P. Fernandes & P. J. Costa Branco, 2020. "Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle," Energies, MDPI, vol. 13(10), pages 1-24, May.
    15. Li Yang & Fuzhao Yang & Weitao Sheng & Kun Zhou & Tianmin Huang, 2021. "Fuzzy Chaos Control of Fractional Order D-PMSG for Wind Turbine with Uncertain Parameters by State Feedback Design," Energies, MDPI, vol. 14(21), pages 1-15, November.
    16. Duc-Kien Ngo & Min-Fu Hsieh, 2019. "Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet," Energies, MDPI, vol. 12(18), pages 1-20, September.
    17. Namala Narasimhulu & R. S. R. Krishnam Naidu & Przemysław Falkowski-Gilski & Parameshachari Bidare Divakarachari & Upendra Roy, 2022. "Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm," Energies, MDPI, vol. 15(22), pages 1-21, November.
    18. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    19. Giampaolo Buticchi & David Gerada & Luigi Alberti & Michael Galea & Pat Wheeler & Serhiy Bozhko & Sergei Peresada & He Zhang & Chengming Zhang & Chris Gerada, 2019. "Challenges of the Optimization of a High-Speed Induction Machine for Naval Applications," Energies, MDPI, vol. 12(12), pages 1-20, June.
    20. Pedram Asef & Ramon Bargallo & Andrew Lapthorn & Davide Tavernini & Lingyun Shao & Aldo Sorniotti, 2021. "Assessment of the Energy Consumption and Drivability Performance of an IPMSM-Driven Electric Vehicle Using Different Buried Magnet Arrangements," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1716-:d:341365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.