IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16308-d995469.html
   My bibliography  Save this article

Smart Distribution Mechanisms—Part I: From the Perspectives of Planning

Author

Listed:
  • Shahid Nawaz Khan

    (U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan)

  • Syed Ali Abbas Kazmi

    (U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan)

  • Abdullah Altamimi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Zafar A. Khan

    (Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur AJK 10250, Pakistan)

  • Mohammed A. Alghassab

    (Department of Electrical and Computer Engineering, Shaqra University, Riyadh 11911, Saudi Arabia)

Abstract

To enhance the reliability and resilience of power systems and achieve reliable delivery of power to end users, smart distribution networks (SDNs) play a vital role. The conventional distribution network is transforming into an active one by incorporating a higher degree of automation. Replacing the traditional absence of manual actions, energy delivery is becoming increasingly dependent on intelligent active system management. As an emerging grid modernization concept, the smart grid addresses a wide range of economic and environmental concerns, especially by integrating a wide range of active technologies at distribution level. At the same time, these active technologies are causing a slew of technological problems in terms of power quality and stability. The development of such strategies and approaches that can improve SDN infrastructure in terms of planning, operation, and control has always been essential. As a result, a substantial number of studies have been conducted in these areas over the last 10–15 years. The current literature lacks a combined systematic analysis of the planning, operation, and control of SDN technologies. This paper conducts a systematic survey of the state-of-the-art advancements in SDN planning, operation, and control over the last 10 years. The reviewed literature is structured so that each SDN technology is discussed sequentially from the viewpoints of planning, operation, and then control. A comprehensive analysis of practical SND concepts across the globe is also presented in later sections. The key constraints and future research opportunities in the existing literature are discussed in the final part. This review specifically assists readers in comprehending current trends in SDN planning, operation, and control, as well as identifying the need for further research to contribute to the field.

Suggested Citation

  • Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16308-:d:995469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arghira, Nicoleta & Hawarah, Lamis & Ploix, Stéphane & Jacomino, Mireille, 2012. "Prediction of appliances energy use in smart homes," Energy, Elsevier, vol. 48(1), pages 128-134.
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. Hakimi, Seyed Mehdi & Hasankhani, Arezoo & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Stochastic planning of a multi-microgrid considering integration of renewable energy resources and real-time electricity market," Applied Energy, Elsevier, vol. 298(C).
    4. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    5. Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
    6. Changyu Zhou & Guohe Huang & Jiapei Chen, 2018. "Planning of Electric Power Systems Considering Virtual Power Plants with Dispatchable Loads Included: An Inexact Two-Stage Stochastic Linear Programming Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, August.
    7. Syed Ali Abbas Kazmi & Hafiz Waleed Ahmad & Dong Ryeol Shin, 2019. "A New Improved Voltage Stability Assessment Index-centered Integrated Planning Approach for Multiple Asset Placement in Mesh Distribution Systems," Energies, MDPI, vol. 12(16), pages 1-41, August.
    8. Gayatri, M.T.L. & Parimi, Alivelu.M. & Pavan Kumar, A.V., 2018. "A review of reactive power compensation techniques in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1030-1036.
    9. S. Carcangiu & A. Fanni & P. A. Pegoraro & G. Sias & S. Sulis, 2020. "Forecasting-Aided Monitoring for the Distribution System State Estimation," Complexity, Hindawi, vol. 2020, pages 1-15, February.
    10. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    11. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    12. S. Angalaeswari & P. Sanjeevikumar & K. Jamuna & Zbigniew Leonowicz, 2020. "Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    13. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    15. Tomasz Sikorski & Michał Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyła & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2019. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Economic Aspects," Energies, MDPI, vol. 12(23), pages 1-21, November.
    16. Jichun Liu & Jianhua Li & Yue Xiang & Xin Zhang & Wanxiao Jiang, 2019. "Optimal Sizing of Cascade Hydropower and Distributed Photovoltaic Included Virtual Power Plant Considering Investments and Complementary Benefits in Electricity Markets," Energies, MDPI, vol. 12(5), pages 1-23, March.
    17. Rasool Bakhsh & Nadeem Javaid & Itrat Fatima & Majid Iqbal Khan & Khaled. A. Almejalli, 2018. "Towards Efficient Resource Utilization Exploiting Collaboration between HPF and 5G Enabled Energy Management Controllers in Smart Homes," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    18. Fernandez, Edstan & Hossain, M.J. & Nizami, M.S.H., 2018. "Game-theoretic approach to demand-side energy management for a smart neighbourhood in Sydney incorporating renewable resources," Applied Energy, Elsevier, vol. 232(C), pages 245-257.
    19. Tascikaraoglu, A. & Erdinc, O. & Uzunoglu, M. & Karakas, A., 2014. "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units," Applied Energy, Elsevier, vol. 119(C), pages 445-453.
    20. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    21. Willem van Winden & Daniel van den Buuse, 2017. "Smart City Pilot Projects: Exploring the Dimensions and Conditions of Scaling Up," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 51-72, October.
    22. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    23. Michal Ptacek & Vaclav Vycital & Petr Toman & Jan Vaculik, 2019. "Analysis of Dense-Mesh Distribution Network Operation Using Long-Term Monitoring Data," Energies, MDPI, vol. 12(22), pages 1-25, November.
    24. Rodríguez, Fermín & Fleetwood, Alice & Galarza, Ainhoa & Fontán, Luis, 2018. "Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control," Renewable Energy, Elsevier, vol. 126(C), pages 855-864.
    25. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    26. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    27. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    28. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    29. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    30. Pinto, Rafael S. & Unsihuay-Vila, Clodomiro & Tabarro, Fabricio H., 2021. "Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties," Applied Energy, Elsevier, vol. 297(C).
    31. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    32. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    33. Imran & Shabir Ahmad & DoHyeun Kim, 2019. "Design and Implementation of Thermal Comfort System based on Tasks Allocation Mechanism in Smart Homes," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    34. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    35. Akbari, Kaveh & Jolai, Fariborz & Ghaderi, Seyed Farid, 2016. "Optimal design of distributed energy system in a neighborhood under uncertainty," Energy, Elsevier, vol. 116(P1), pages 567-582.
    36. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    37. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    38. Teketay Mulu Beza & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network," Energies, MDPI, vol. 13(22), pages 1-17, November.
    39. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    40. Quadri, Imran Ahmad & Bhowmick, S. & Joshi, D., 2018. "A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems," Applied Energy, Elsevier, vol. 211(C), pages 1245-1260.
    41. Virgil Dumbrava & Theodor Miclescu & George Cristian Lazaroiu, 2017. "Power Distribution Networks Planning Optimization in Smart Cities," Springer Optimization and Its Applications, in: Athanasia Karakitsiou & Athanasios Migdalas & Stamatina Th. Rassia & Panos M. Pardalos (ed.), City Networks, chapter 0, pages 213-226, Springer.
    42. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    43. Nojavan, Sayyad & Majidi, Majid & Esfetanaj, Naser Nourani, 2017. "An efficient cost-reliability optimization model for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management," Energy, Elsevier, vol. 139(C), pages 89-97.
    44. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    45. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    46. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    47. Shiping Geng & Caixia Tan & Dongxiao Niu & Xiaopeng Guo, 2021. "Optimal Allocation Model of Virtual Power Plant Capacity considering Electric Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-19, June.
    48. Syed Ali Abbas Kazmi & Dong Ryeol Shin, 2017. "DG Placement in Loop Distribution Network with New Voltage Stability Index and Loss Minimization Condition Based Planning Approach under Load Growth," Energies, MDPI, vol. 10(8), pages 1-28, August.
    49. Dadashi-Rad, Mohammad Hosein & Ghasemi-Marzbali, Ali & Ahangar, Roya Ahmadi, 2020. "Modeling and planning of smart buildings energy in power system considering demand response," Energy, Elsevier, vol. 213(C).
    50. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    51. Hun-Chul Seo, 2020. "New Protection Scheme in Loop Distribution System with Distributed Generation," Energies, MDPI, vol. 13(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    2. Syed Ali Abbas Kazmi & Usama Ameer Khan & Waleed Ahmad & Muhammad Hassan & Fahim Ahmed Ibupoto & Syed Basit Ali Bukhari & Sajid Ali & M. Mahad Malik & Dong Ryeol Shin, 2021. "Multiple (TEES)-Criteria-Based Sustainable Planning Approach for Mesh-Configured Distribution Mechanisms across Multiple Load Growth Horizons," Energies, MDPI, vol. 14(11), pages 1-44, May.
    3. Syed Ali Abbas Kazmi & Hafiz Waleed Ahmad & Dong Ryeol Shin, 2019. "A New Improved Voltage Stability Assessment Index-centered Integrated Planning Approach for Multiple Asset Placement in Mesh Distribution Systems," Energies, MDPI, vol. 12(16), pages 1-41, August.
    4. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    5. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    6. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    7. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    8. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    9. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    10. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    11. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    12. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    13. Assumpció Huertas & Antonio Moreno & Jordi Pascual, 2021. "Place Branding for Smart Cities and Smart Tourism Destinations: Do They Communicate Their Smartness?," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    14. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    15. Oleg Golubchikov & Mary J. Thornbush, 2022. "Smart Cities as Hybrid Spaces of Governance: Beyond the Hard/Soft Dichotomy in Cyber-Urbanization," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    16. Magdalena Grebosz-Krawczyk, 2021. "Place branding (r)evolution: the management of the smart city’s brand," Place Branding and Public Diplomacy, Palgrave Macmillan, vol. 17(1), pages 93-104, March.
    17. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    18. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    19. Izabela Jonek-Kowalska & Radosław Wolniak, 2022. "Sharing Economies’ Initiatives in Municipal Authorities’ Perspective: Research Evidence from Poland in the Context of Smart Cities’ Development," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    20. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16308-:d:995469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.