IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Developing the dual system of wind chiller integrated with wind generator

  • Ting, Chen-Ching
  • Lai, Chen-Wei
  • Huang, Chien-Bang
Registered author(s):

    The successfully developed wind chiller in our CCT Lab. directly uses wind force to drive refrigeration system and hence reduces two times energy conversions between mechanical and electrical energies. The wind chiller needs high wind speed for its effective work due to the large working torque is required by the compressor. For the purpose of enlarging the applied wind field by the wind machine, this work aims to develop a dual system of wind chiller integrated with wind generator. The integrated wind generator can use the wind energy which cannot effectively drive the compressor. Therefore, the new developed dual system can apply larger range of the wind field and further increase the total working efficiency of the wind machine. A programmable logic controller (PLC) is applied in this wind forced dual system to select the wind chiller or the wind generator separately in terms of the rotational speed of the wind machine. In this work, the wind chiller is switched on while the accelerated rotational speed reaches 80Â rpm and off while the decelerated rotational speed reaches 60Â rpm. The integrated wind generator is switched on while the decelerated rotational speed reaches 60Â rpm and off while the decelerated rotational speed reaches 40Â rpm. The two apparatuses in the dual system always work separately. The results show that there is ca. 18.5% increment of effective working efficiency which is captured by the wind generator.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V1T-5172KK3-1/2/f758c9215ed228af365f2b6f9f0c8bd8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 88 (2011)
    Issue (Month): 3 (March)
    Pages: 741-747

    as
    in new window

    Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:741-747
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Thumthae, Chalothorn & Chitsomboon, Tawit, 2009. "Optimal angle of attack for untwisted blade wind turbine," Renewable Energy, Elsevier, vol. 34(5), pages 1279-1284.
    2. Ting, Chen-Ching & Lee, Jing-Nang & Shen, Chun-Hong, 2008. "Development of a wind forced chiller and its efficiency analysis," Applied Energy, Elsevier, vol. 85(12), pages 1190-1197, December.
    3. Lanzafame, R. & Messina, M., 2009. "Design and performance of a double-pitch wind turbine with non-twisted blades," Renewable Energy, Elsevier, vol. 34(5), pages 1413-1420.
    4. Wang, F. & Bai, L. & Fletcher, J. & Whiteford, J. & Cullen, D., 2008. "Development of small domestic wind turbine with scoop and prediction of its annual power output," Renewable Energy, Elsevier, vol. 33(7), pages 1637-1651.
    5. Whale, Jonathan, 2009. "Design and construction of a simple blade pitch measurement system for small wind turbines," Renewable Energy, Elsevier, vol. 34(2), pages 425-429.
    6. Müller, Gerald & Jentsch, Mark F. & Stoddart, Euan, 2009. "Vertical axis resistance type wind turbines for use in buildings," Renewable Energy, Elsevier, vol. 34(5), pages 1407-1412.
    7. Welch, Jonathan B. & Venkateswaran, Anand, 2009. "The dual sustainability of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1121-1126, June.
    8. Vardar, Ali & Alibas, Ilknur, 2008. "Research on wind turbine rotor models using NACA profiles," Renewable Energy, Elsevier, vol. 33(7), pages 1721-1732.
    9. J.B. (Hans) Opschoor, 2009. "Sustainability," Chapters, in: Handbook of Economics and Ethics, chapter 69 Edward Elgar.
    10. Lin, Chyou-Jong & Yu, Oliver S. & Chang, Chung-Liang & Liu, Yuin-Hong & Chuang, Yuh-Fa & Lin, Yu-Liang, 2009. "Challenges of wind farms connection to future power systems in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1926-1930.
    11. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:741-747. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.