IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i3p741-747.html
   My bibliography  Save this article

Developing the dual system of wind chiller integrated with wind generator

Author

Listed:
  • Ting, Chen-Ching
  • Lai, Chen-Wei
  • Huang, Chien-Bang

Abstract

The successfully developed wind chiller in our CCT Lab. directly uses wind force to drive refrigeration system and hence reduces two times energy conversions between mechanical and electrical energies. The wind chiller needs high wind speed for its effective work due to the large working torque is required by the compressor. For the purpose of enlarging the applied wind field by the wind machine, this work aims to develop a dual system of wind chiller integrated with wind generator. The integrated wind generator can use the wind energy which cannot effectively drive the compressor. Therefore, the new developed dual system can apply larger range of the wind field and further increase the total working efficiency of the wind machine. A programmable logic controller (PLC) is applied in this wind forced dual system to select the wind chiller or the wind generator separately in terms of the rotational speed of the wind machine. In this work, the wind chiller is switched on while the accelerated rotational speed reaches 80Â rpm and off while the decelerated rotational speed reaches 60Â rpm. The integrated wind generator is switched on while the decelerated rotational speed reaches 60Â rpm and off while the decelerated rotational speed reaches 40Â rpm. The two apparatuses in the dual system always work separately. The results show that there is ca. 18.5% increment of effective working efficiency which is captured by the wind generator.

Suggested Citation

  • Ting, Chen-Ching & Lai, Chen-Wei & Huang, Chien-Bang, 2011. "Developing the dual system of wind chiller integrated with wind generator," Applied Energy, Elsevier, vol. 88(3), pages 741-747, March.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:741-747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00364-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ting, Chen-Ching & Lee, Jing-Nang & Shen, Chun-Hong, 2008. "Development of a wind forced chiller and its efficiency analysis," Applied Energy, Elsevier, vol. 85(12), pages 1190-1197, December.
    2. Whale, Jonathan, 2009. "Design and construction of a simple blade pitch measurement system for small wind turbines," Renewable Energy, Elsevier, vol. 34(2), pages 425-429.
    3. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    4. Lanzafame, R. & Messina, M., 2009. "Design and performance of a double-pitch wind turbine with non-twisted blades," Renewable Energy, Elsevier, vol. 34(5), pages 1413-1420.
    5. Wang, F. & Bai, L. & Fletcher, J. & Whiteford, J. & Cullen, D., 2008. "Development of small domestic wind turbine with scoop and prediction of its annual power output," Renewable Energy, Elsevier, vol. 33(7), pages 1637-1651.
    6. Vardar, Ali & Alibas, Ilknur, 2008. "Research on wind turbine rotor models using NACA profiles," Renewable Energy, Elsevier, vol. 33(7), pages 1721-1732.
    7. Lin, Chyou-Jong & Yu, Oliver S. & Chang, Chung-Liang & Liu, Yuin-Hong & Chuang, Yuh-Fa & Lin, Yu-Liang, 2009. "Challenges of wind farms connection to future power systems in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1926-1930.
    8. Müller, Gerald & Jentsch, Mark F. & Stoddart, Euan, 2009. "Vertical axis resistance type wind turbines for use in buildings," Renewable Energy, Elsevier, vol. 34(5), pages 1407-1412.
    9. J.B. (Hans) Opschoor, 2009. "Sustainability," Chapters,in: Handbook of Economics and Ethics, chapter 69 Edward Elgar Publishing.
    10. Welch, Jonathan B. & Venkateswaran, Anand, 2009. "The dual sustainability of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1121-1126, June.
    11. Thumthae, Chalothorn & Chitsomboon, Tawit, 2009. "Optimal angle of attack for untwisted blade wind turbine," Renewable Energy, Elsevier, vol. 34(5), pages 1279-1284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting, Chen-Ching & Tsai, Da-Yi & Hsiao, Chung-Cheng, 2012. "Developing a mechanical roadway system for waste energy capture of vehicles and electric generation," Applied Energy, Elsevier, vol. 92(C), pages 1-8.
    2. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:741-747. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.