IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6004-d892081.html
   My bibliography  Save this article

Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)

Author

Listed:
  • Petronilla Fragiacomo

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

  • Francesco Piraino

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

  • Matteo Genovese

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

  • Lorenzo Flaccomio Nardi Dei

    (Trenitalia Spa, Piazze della Croce Rossa, 00161 Rome, Italy)

  • Daria Donati

    (Trenitalia Spa, Piazze della Croce Rossa, 00161 Rome, Italy)

  • Michele Vincenzo Migliarese Caputi

    (Dipartimento di Ingegneria Meccanica e Aerospaziale, “Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Domenico Borello

    (Dipartimento di Ingegneria Meccanica e Aerospaziale, “Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

In order to decarbonize the rail industry, the development of innovative locomotives with the ability to use multiple energy sources, constituting hybrid powertrains, plays a central role in transitioning from conventional diesel trains. In this paper, four configurations based on suitable combinations of fuel cells and/or batteries are designed to replace or supplement a diesel/overhead line powertrain on a real passenger train (the Hitachi Blues) tested on an existing regional track, the Catanzaro Lido–Reggio Calabria line (Italy), managed by Trenitalia SpA. (Italy). The configurations (namely battery–electrified line, full-battery, fuel cell–battery–electrified line, and fuel cell–battery) are first sized with the intention of completing a round trip, then integrated on board with diesel engine replacement in mind, and finally occupy a portion of the passenger area within two locomotives. The achieved performance is thoroughly examined in terms of fuel cell efficiency (greater than 47%), hydrogen consumption (less than 72 kg), braking energy recovery (approximately 300 kWh), and battery interval SOC.

Suggested Citation

  • Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6004-:d:892081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petronilla Fragiacomo & Giuseppe De Lorenzo & Orlando Corigliano, 2018. "Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO 2 -H 2 O Feed Stream," Energies, MDPI, vol. 11(9), pages 1-17, August.
    2. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    3. Kortazar, Andoni & Bueno, Gorka & Hoyos, David, 2021. "Environmental balance of the high speed rail network in Spain: A Life Cycle Assessment approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    4. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    5. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    6. Cuidong Xu & Zhu Chen & Ka Wai Eric Cheng & Xiaolin Wang & Ho Fai Ho, 2019. "A Supercapacitor-Based Method to Mitigate Overvoltage and Recycle the Energy of Pantograph Arcing in the High Speed Railway," Energies, MDPI, vol. 12(7), pages 1-12, March.
    7. Thomas Kadyk & Christopher Winnefeld & Richard Hanke-Rauschenbach & Ulrike Krewer, 2018. "Analysis and Design of Fuel Cell Systems for Aviation," Energies, MDPI, vol. 11(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide D’Amato & Marco Lorito & Vito Giuseppe Monopoli & Rinaldo Consoletti & Giuseppe Maiellaro & Francesco Cupertino, 2023. "Design Procedure and Testing for the Electrification of a Maintenance Railway Vehicle," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    4. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    5. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    6. Mengzhi Zou & Changyou Li & Yanni Xiong, 2022. "Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    7. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    8. Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
    9. Khomein, Piyachai & Ketelaars, Wesley & Lap, Tijs & Liu, Gao, 2021. "Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Omid Norouzi & Animesh Dutta, 2022. "The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste," Energies, MDPI, vol. 15(2), pages 1-17, January.
    11. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    12. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    13. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    15. Semyon D. Shraer & Nikita D. Luchinin & Ivan A. Trussov & Dmitry A. Aksyonov & Anatoly V. Morozov & Sergey V. Ryazantsev & Anna R. Iarchuk & Polina A. Morozova & Victoria A. Nikitina & Keith J. Steven, 2022. "Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    17. Mi Tian & Yanchunxiao Qi & Eun-Suok Oh, 2021. "Application of a Polyacrylate Latex to a Lithium Iron Phosphate Cathode as a Binder Material," Energies, MDPI, vol. 14(7), pages 1-10, March.
    18. Duo Zhang & Guohai Liu & Wenxiang Zhao & Penghu Miao & Yan Jiang & Huawei Zhou, 2014. "A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle," Energies, MDPI, vol. 7(7), pages 1-15, July.
    19. Jingang Guo & Xiaoping Jian & Guangyu Lin, 2014. "Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller," Energies, MDPI, vol. 7(10), pages 1-18, October.
    20. Vijai Kaarthi Visvanathan & Karthikeyan Palaniswamy & Dineshkumar Ponnaiyan & Mathan Chandran & Thanarajan Kumaresan & Jegathishkumar Ramasamy & Senthilarasu Sundaram, 2023. "Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6004-:d:892081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.