IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p475-d721581.html
   My bibliography  Save this article

The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste

Author

Listed:
  • Omid Norouzi

    (School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada)

  • Animesh Dutta

    (School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada)

Abstract

With the implementation of new policies supporting renewable natural gas production from organic wastes, Canada began replacing traditional disposal methods with highly integrated biogas production strategies. Herein, data from published papers, Canadian Biogas Association, Canada’s national statistical agency, and energy companies’ websites were gathered to gain insight into the current status of anaerobic digestion plants in recovering energy and resource from organic wastes. The availability of materials prepared for recycling by companies and local waste management organizations and existing infrastructures for municipal solid waste management were examined. Governmental incentives and discouragements in Canada and world anaerobic digestion leaders regarding organic fraction municipal solid waste management were comprehensively reviewed to identify the opportunities for developing large-scale anaerobic digestion in Canada. A range of anaerobic digestion facilities, including water resource recovery facilities, standalone digesters, and on-farm digesters throughout Ontario, were compared in terms of digestion type, digester volume, feedstock (s), and electricity capacity to better understand the current role of biogas plants in this province. Finally, technology perspectives, solutions, and roadmaps were discussed to shape the future in terms of organic fraction municipal solid waste management. The findings suggested that the biogas industry growth in Canada relies on provincial energy and waste management policies, advanced technologies for diverting organic waste from landfills, improving biogas yield using existing pretreatment methods, and educating farmers regarding digester operations.

Suggested Citation

  • Omid Norouzi & Animesh Dutta, 2022. "The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste," Energies, MDPI, vol. 15(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:475-:d:721581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    2. Anna Sobczak & Ewa Chomać-Pierzecka & Andrzej Kokiel & Monika Różycka & Jacek Stasiak & Dariusz Soboń, 2022. "Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany," Energies, MDPI, vol. 15(14), pages 1-18, July.
    3. Srećko Ćurčić & Dragan Milićević & Nataša Kilibarda & Aleksandar Peulić, 2025. "Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems," Sustainability, MDPI, vol. 17(7), pages 1-19, April.
    4. Meng, Fanting, 2024. "Driving sustainable development: Fiscal policy and the promotion of natural resource efficiency," Resources Policy, Elsevier, vol. 90(C).
    5. Judit Lovasné Avató & Viktoria Mannheim, 2022. "Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios," Energies, MDPI, vol. 15(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    4. Panagiotis Xypolias & Stergios Vakalis & Ioannis Daskaloudis & Dimitrios Francis Lekkas, 2023. "Hydrothermal Carbonization of Dry Anaerobic Digestion Residues Derived from Food and Agro Wastes in Lesvos Island," Energies, MDPI, vol. 16(12), pages 1-14, June.
    5. Son, Donghee & Song, Youngbin & Park, Shina & Oh, Junseok & Kim, Sang Woo, 2025. "Online state-of-charge and capacity co-estimation for lithium-ion batteries under aging and varying temperatures," Energy, Elsevier, vol. 316(C).
    6. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    7. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
    8. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    9. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    11. Semyon D. Shraer & Nikita D. Luchinin & Ivan A. Trussov & Dmitry A. Aksyonov & Anatoly V. Morozov & Sergey V. Ryazantsev & Anna R. Iarchuk & Polina A. Morozova & Victoria A. Nikitina & Keith J. Steven, 2022. "Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Kafle, Sagar & Poudel, Bibek & Gyawali, Purushottam & Bhattarai, Dilli Ram & Acharya, Tri Dev & Acharya, Rupesh & Dhakal, Saurav & Pradhan, Prajal & Adhikari, Sushil, 2025. "Industrial hemp in Nepal: Production and valorization perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    13. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    14. Mi Tian & Yanchunxiao Qi & Eun-Suok Oh, 2021. "Application of a Polyacrylate Latex to a Lithium Iron Phosphate Cathode as a Binder Material," Energies, MDPI, vol. 14(7), pages 1-10, March.
    15. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    17. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    18. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Yong Li & Jue Yang & Wei Long Liu & Cheng Lin Liao, 2020. "Multi-Level Model Reduction and Data-Driven Identification of the Lithium-Ion Battery," Energies, MDPI, vol. 13(15), pages 1-23, July.
    20. Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:475-:d:721581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.