IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220323434.html
   My bibliography  Save this article

Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures

Author

Listed:
  • Huang, Deyang
  • Chen, Ziqiang
  • Zhou, Shiyao

Abstract

The degraded performance of lithium-ion batteries at low temperatures is a key obstacle to the development of battery energy storage system applied in extremely cold environment. Therefore, this paper proposes a heating method based on model prediction to support the low-temperature operation of battery pack without additional power sources. Battery pack model is developed based on Thevenin equivalent circuit model. A co-estimator is established to update model parameters and state-of-charge online using adaptive recursive least squares and extended Kalman filter. The permissible discharging current of pack is predicted based on multiple constraints to prevent over-discharge. Then, the battery-powered heating structure, control circuit, and heating strategy are designed. The strategy contains a preheating process for cold-start and a holding process for stabilizing cell temperature. The method is verified experimentally through systematic battery-in-the-loop tests at the environmental temperature of – 40 °C. Results show that the method can uniformly preheat all in-pack cells from − 40 °C to − 20 °C in 330 s consuming 4.7% of nominal capacity. In holding process, it is energy-efficient to raise cell temperature continuously and then maintain at 5 °C, which makes 68.3% of nominal capacity available when loading a modified federal urban driving schedule.

Suggested Citation

  • Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323434
    DOI: 10.1016/j.energy.2020.119236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220323434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Guo, Shanshan & Xiong, Rui & Wang, Kan & Sun, Fengchun, 2018. "A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 256-263.
    3. Huang, Deyang & Chen, Ziqiang & Zheng, Changwen & Li, Haibin, 2019. "A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature," Energy, Elsevier, vol. 185(C), pages 847-861.
    4. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    5. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    6. Zheng, Fangdan & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Pecht, Michael, 2016. "Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles," Energy, Elsevier, vol. 113(C), pages 64-75.
    7. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Ruohan & Shen, Weixiang, 2022. "A data-model fusion method for online state of power estimation of lithium-ion batteries at high discharge rate in electric vehicles," Energy, Elsevier, vol. 254(PA).
    2. Ren, Ruyang & Zhao, Yaohua & Diao, Yanhua & Liang, Lin, 2022. "Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array," Energy, Elsevier, vol. 253(C).
    3. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
    4. Ma, Yan & Ding, Hao & Liu, Yongqin & Gao, Jinwu, 2022. "Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC," Energy, Elsevier, vol. 244(PA).
    5. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    6. Wu, Tingting & Wang, Changhong & Hu, Yanxin & Liang, Zhixuan & Fan, Changxiang, 2023. "Research on electrochemical characteristics and heat generating properties of power battery based on multi-time scales," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Di Giorgio, Paolo & Di Ilio, Giovanni & Jannelli, Elio & Conte, Fiorentino Valerio, 2022. "Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles," Applied Energy, Elsevier, vol. 315(C).
    3. Li, Jun-qiu & Fang, Linlin & Shi, Wentong & Jin, Xin, 2018. "Layered thermal model with sinusoidal alternate current for cylindrical lithium-ion battery at low temperature," Energy, Elsevier, vol. 148(C), pages 247-257.
    4. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    6. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    7. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    8. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    9. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    10. Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
    11. Goh, Taedong & Park, Minjun & Seo, Minhwan & Kim, Jun Gu & Kim, Sang Woo, 2018. "Successive-approximation algorithm for estimating capacity of Li-ion batteries," Energy, Elsevier, vol. 159(C), pages 61-73.
    12. Filip Maletić & Mario Hrgetić & Joško Deur, 2020. "Dual Nonlinear Kalman Filter-Based SoC and Remaining Capacity Estimation for an Electric Scooter Li-NMC Battery Pack," Energies, MDPI, vol. 13(3), pages 1-16, January.
    13. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    14. Kosmadakis, Ioannis E. & Elmasides, Costas & Koulinas, Georgios & Tsagarakis, Konstantinos P., 2021. "Energy unit cost assessment of six photovoltaic-battery configurations," Renewable Energy, Elsevier, vol. 173(C), pages 24-41.
    15. Ma, Yan & Ding, Hao & Liu, Yongqin & Gao, Jinwu, 2022. "Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC," Energy, Elsevier, vol. 244(PA).
    16. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Xiong, Rui & Li, Linlin & Li, Zhirun & Yu, Quanqing & Mu, Hao, 2018. "An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 264-275.
    18. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
    19. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
    20. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.