IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1205-d1043872.html
   My bibliography  Save this article

Design Procedure and Testing for the Electrification of a Maintenance Railway Vehicle

Author

Listed:
  • Davide D’Amato

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Marco Lorito

    (Tesmec Rail Srl, Via A. Fogazzaro, 51, 70043 Monopoli, Italy
    These authors contributed equally to this work.)

  • Vito Giuseppe Monopoli

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Rinaldo Consoletti

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Giuseppe Maiellaro

    (Tesmec Rail Srl, Via A. Fogazzaro, 51, 70043 Monopoli, Italy
    These authors contributed equally to this work.)

  • Francesco Cupertino

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

Abstract

In response to climate change, governments around the world have committed to reducing greenhouse gas emissions, which contribute to global warming, through the energy transition from fossil fuels to renewable energy sources and electrification of transportation. This article outlines the design procedure for the electrification of a railway vehicle used for maintenance services on the rail network. The proposed methodology consists of the design of both an all-electric propulsion system and storage system with the aim of zero emissions when the vehicle is operating in tunnels and to minimise noise during maintenance services in cities. After highlighting the characteristics of the railway vehicle under consideration, a simulation model of the propulsion and generation system was developed in order to calculate the energy consumption of the entire railway system. Finally, experimental tests carried out on the prototype proved the effectiveness of the design procedure adopted and the proposed mathematical model, showing a good matching with the simulated results.

Suggested Citation

  • Davide D’Amato & Marco Lorito & Vito Giuseppe Monopoli & Rinaldo Consoletti & Giuseppe Maiellaro & Francesco Cupertino, 2023. "Design Procedure and Testing for the Electrification of a Maintenance Railway Vehicle," Energies, MDPI, vol. 16(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1205-:d:1043872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jelena Loncarski & Vito Giuseppe Monopoli & Giuseppe Leonardo Cascella & Francesco Cupertino, 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Ying Yang & Weige Zhang & Shaoyuan Wei & Zhenpo Wang, 2020. "Optimal Sizing of On-Board Energy Storage Systems and Stationary Charging Infrastructures for a Catenary-Free Tram," Energies, MDPI, vol. 13(23), pages 1-21, November.
    3. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    4. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    5. Morris Brenna & Vittorio Bucci & Maria Carmen Falvo & Federica Foiadelli & Alessandro Ruvio & Giorgio Sulligoi & Andrea Vicenzutti, 2020. "A Review on Energy Efficiency in Three Transportation Sectors: Railways, Electrical Vehicles and Marine," Energies, MDPI, vol. 13(9), pages 1-19, May.
    6. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    3. Alessandro Falai & Tiziano Alberto Giuliacci & Daniela Misul & Giacomo Paolieri & Pier Giuseppe Anselma, 2022. "Modeling and On-Road Testing of an Electric Two-Wheeler towards Range Prediction and BMS Integration," Energies, MDPI, vol. 15(7), pages 1-27, March.
    4. Elumalai Perumal Venkatesan & Parthasarathy Murugesan & Sri Veera Venkata Satya Narayana Pichika & Durga Venkatesh Janaki & Yasir Javed & Z. Mahmoud & C Ahamed Saleel, 2022. "Effects of Injection Timing and Antioxidant on NOx Reduction of CI Engine Fueled with Algae Biodiesel Blend Using Machine Learning Techniques," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    5. Chung-Jen Chou & Shyh-Biau Jiang & Tse-Liang Yeh & Chein-Chung Sun, 2021. "Fault-Tolerant Battery Power Network Architecture of Networked Swappable Battery Packs in Parallel," Energies, MDPI, vol. 14(10), pages 1-21, May.
    6. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    7. Young-Gyu Lee & Jong-Kwan Kim & Chang-Hee Lee, 2021. "Analytic Hierarchy Process Analysis for Industrial Application of LNG Bunkering: A Comparison of Japan and South Korea," Energies, MDPI, vol. 14(10), pages 1-17, May.
    8. Aleksander Suti & Gianpietro Di Rito & Giuseppe Mattei, 2022. "Development and Experimental Validation of Novel Thevenin-Based Hysteretic Models for Li-Po Battery Packs Employed in Fixed-Wing UAVs," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    10. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Elżbieta Szaruga & Elżbieta Załoga & Arkadiusz Drewnowski & Paulina Dąbrosz-Drewnowska, 2023. "Convergence of Energy Intensity of the Export of Goods by Rail Transport: Linkages with the Spatial Integration and Economic Condition of Countries," Energies, MDPI, vol. 16(9), pages 1-24, April.
    12. Salvatore Musumeci, 2022. "Special Issue “Advanced DC-DC Power Converters and Switching Converters”," Energies, MDPI, vol. 15(4), pages 1-5, February.
    13. Paweł Górecki & Krzysztof Górecki, 2020. "Analysis of the Usefulness Range of the Averaged Electrothermal Model of a Diode–Transistor Switch to Compute the Characteristics of the Boost Converter," Energies, MDPI, vol. 14(1), pages 1-16, December.
    14. Tomasz Neumann, 2021. "Comparative Analysis of Long-Distance Transportation with the Example of Sea and Rail Transport," Energies, MDPI, vol. 14(6), pages 1-13, March.
    15. Cheng, Fangwei & Luo, Hongxi & Jenkins, Jesse D. & Larson, Eric D., 2023. "The value of low- and negative-carbon fuels in the transition to net-zero emission economies: Lifecycle greenhouse gas emissions and cost assessments across multiple fuel types," Applied Energy, Elsevier, vol. 331(C).
    16. Mónica Camas-Náfate & Alberto Coronado-Mendoza & Carlos Jesahel Vega-Gómez & Francisco Espinosa-Moreno, 2022. "Modeling and Simulation of a Commercial Lithium-Ion Battery with Charge Cycle Predictions," Sustainability, MDPI, vol. 14(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1205-:d:1043872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.