IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4127-d590774.html
   My bibliography  Save this article

Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources

Author

Listed:
  • Matej Bereš

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Dobroslav Kováč

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Tibor Vince

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Irena Kováčová

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Ján Molnár

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Iveta Tomčíková

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Jozef Dziak

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Patrik Jacko

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Branislav Fecko

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

  • Šimon Gans

    (Department of Theoretical and Industrial Electrical Engineering, Technical University of Košice, 04200 Košice, Slovakia)

Abstract

The article describes the principles based on which it is possible to obtain energy from renewable sources more efficiently. The principles use the conventional DC-DC interleaved buck converter based on the common electronic component types and the control strategy. A novelty of such a proposed solution lies in the methods which are not new, but with the right combination, better results can be achieved. The resulting method can be implemented into various topologies where the highest efficiency for wide input power is required. In case of the renewable energy sources where the power can vary hugely during the day, the proposed method can be implemented. Therefore, the article provides several steps, from calculation through simulation to experimental results that brings reader close to understanding of a such proposed solution.

Suggested Citation

  • Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4127-:d:590774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ching-Ming Lai, 2016. "Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids," Energies, MDPI, vol. 9(6), pages 1-25, May.
    2. Maissa Farhat & Oscar Barambones & Lassaâd Sbita, 2020. "A Real-Time Implementation of Novel and Stable Variable Step Size MPPT," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    4. Ching-Ming Lai & Jiashen Teh & Yuan-Chih Lin & Yitao Liu, 2020. "Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage," Energies, MDPI, vol. 13(5), pages 1-23, March.
    5. Michal Frivaldsky & Branislav Hanko & Michal Prazenica & Jan Morgos, 2018. "High Gain Boost Interleaved Converters with Coupled Inductors and with Demagnetizing Circuits," Energies, MDPI, vol. 11(1), pages 1-20, January.
    6. Jelena Loncarski & Vito Giuseppe Monopoli & Giuseppe Leonardo Cascella & Francesco Cupertino, 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    7. Jirada Gosumbonggot & Goro Fujita, 2019. "Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature," Energies, MDPI, vol. 12(2), pages 1-22, January.
    8. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    9. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.
    10. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Zhun Meng & Guo-Dong Li, 2017. "An Isolated Three-Port Bidirectional DC-DC Converter with Enlarged ZVS Region for HESS Applications in DC Microgrids," Energies, MDPI, vol. 10(4), pages 1-23, April.
    11. Ching-Ming Lai & Yu-Huei Cheng & Jiashen Teh & Yuan-Chih Lin, 2017. "A New Combined Boost Converter with Improved Voltage Gain as a Battery-Powered Front-End Interface for Automotive Audio Amplifiers," Energies, MDPI, vol. 10(8), pages 1-20, August.
    12. Faiçal Hamidi & Severus Constantin Olteanu & Dumitru Popescu & Houssem Jerbi & Ingrid Dincă & Sondess Ben Aoun & Rabeh Abbassi, 2020. "Model Based Optimisation Algorithm for Maximum Power Point Tracking in Photovoltaic Panels," Energies, MDPI, vol. 13(18), pages 1-20, September.
    13. Jung-min Park & Hyung-jun Byun & Bum-jun Kim & Sung-hun Kim & Chung-yuen Won, 2020. "Analysis and Design of Coupled Inductor for Interleaved Buck-Type Voltage Balancer in Bipolar DC Microgrid," Energies, MDPI, vol. 13(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    2. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    3. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    5. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    6. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    7. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    8. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Ping-Sheng Huang, 2023. "Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems," Energies, MDPI, vol. 16(9), pages 1-23, May.
    9. Ramy Georgious & Jorge Garcia & Pablo Garcia & Angel Navarro-Rodriguez, 2018. "A Comparison of Non-Isolated High-Gain Three-Port Converters for Hybrid Energy Storage Systems," Energies, MDPI, vol. 11(3), pages 1-24, March.
    10. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    11. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    12. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    13. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    14. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    15. Noureddine Bouarroudj & Yehya Houam & Abdelhamid Djari & Vicente Feliu-Batlle & Abdelkader Lakhdari & Boualam Benlahbib, 2023. "A Linear Quadratic Integral Controller for PV-Module Voltage Regulation for the Purpose of Enhancing the Classical Incremental Conductance Algorithm," Energies, MDPI, vol. 16(11), pages 1-17, June.
    16. Ramy Georgious & Jorge Garcia & Mark Sumner & Sarah Saeed & Pablo Garcia, 2020. "Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(1), pages 1-19, January.
    17. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    18. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
    19. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.
    20. Hu Xiong & Jiayuan Li & Bin Xiang & Xiaoguang Jiang & Yuan Mao, 2023. "A High Frequency Multiphase Modular Hybrid Transformerless DC/DC Converter for High-Voltage-Gain High-Current Applications," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4127-:d:590774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.