IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1632-d153920.html
   My bibliography  Save this article

Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications

Author

Listed:
  • Shin-Ju Chen

    (Department of Electrical Engineering, Kun Shan University, Tainan 710, Taiwan)

  • Sung-Pei Yang

    (Green Energy Technology Research Center, Kun Shan University, Tainan 710, Taiwan)

  • Chao-Ming Huang

    (Department of Electrical Engineering, Kun Shan University, Tainan 710, Taiwan)

  • Huann-Ming Chou

    (Green Energy Technology Research Center, Kun Shan University, Tainan 710, Taiwan)

  • Meng-Jie Shen

    (Department of Electrical Engineering, Kun Shan University, Tainan 710, Taiwan)

Abstract

A novel interleaved high step-up DC-DC converter based on voltage multiplier cell and voltage-stacking techniques is proposed for the power conversion in renewable energy power systems. The circuit configuration incorporates an input-parallel output-series boost converter with coupled inductors, clamp circuits and a voltage multiplier cell stacking on the output side to extend the voltage gain. The converter achieves high voltage conversion ratio without working at extreme large duty ratio. The voltage stresses on the power switches are significantly lower than the output voltage. As a result, the low-voltage-rated metal-oxide-semiconductor field-effect transistors (MOSFETs) can be employed to reduce the conduction losses and higher conversion efficiency can be expected. The interleaved operation reduces the input current ripple. The leakage inductances of the coupled inductors act on mitigating the diode reverse recovery problem. The operating principle, steady-state analysis and design guidelines of the proposed converter are presented in detail. Finally, a 1-kW prototype with 28-V input and 380-V output voltages was implemented and tested. The experimental results are presented to validate the performance of the proposed converter.

Suggested Citation

  • Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1632-:d:153920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arunkumari, T. & Indragandhi, V., 2017. "An overview of high voltage conversion ratio DC-DC converter configurations used in DC micro-grid architectures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 670-687.
    2. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.
    3. Yong-Seng Wong & Jiann-Fuh Chen & Kuo-Bin Liu & Yi-Ping Hsieh, 2017. "A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    3. Feng Wang & Yutao Luo & Hongluo Li & Xiaotong Xu, 2019. "Switching Characteristics Optimization of Two-Phase Interleaved Bidirectional DC/DC for Electric Vehicles," Energies, MDPI, vol. 12(3), pages 1-14, January.
    4. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.
    6. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Ping-Sheng Huang, 2023. "Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems," Energies, MDPI, vol. 16(9), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    4. Héctor Hidalgo & Rodolfo Orosco & Héctor Huerta & Nimrod Vázquez & Claudia Hernández & Sergio Pinto, 2023. "A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications," Energies, MDPI, vol. 16(13), pages 1-23, June.
    5. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    7. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    8. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    9. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    10. Hermes Loschi & Piotr Lezynski & Robert Smolenski & Douglas Nascimento & Wojciech Sleszynski, 2020. "FPGA-Based System for Electromagnetic Interference Evaluation in Random Modulated DC/DC Converters," Energies, MDPI, vol. 13(9), pages 1-14, May.
    11. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    12. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Yu-Hua Chen, 2020. "Interleaved High Step-Up DC–DC Converter with Voltage-Lift and Voltage-Stack Techniques for Photovoltaic Systems," Energies, MDPI, vol. 13(10), pages 1-20, May.
    13. Boning Wu & Xuesong Zhou & Youjie Ma, 2020. "Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy," Energies, MDPI, vol. 13(6), pages 1-21, March.
    14. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    15. Hermes Loschi & Robert Smolenski & Piotr Lezynski & Douglas Nascimento & Galina Demidova, 2020. "Aggregated Conducted Electromagnetic Interference Generated by DC/DC Converters with Deterministic and Random Modulation," Energies, MDPI, vol. 13(14), pages 1-9, July.
    16. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    17. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    18. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    19. Yicheng Liu & Jieping Wang & Haiyan Tu, 2019. "Design and Implementation of Finite Time Nonsingular Fast Terminal Sliding Mode Control for a Novel High Step-Up DC-DC Converter," Energies, MDPI, vol. 12(9), pages 1-16, May.
    20. Milad Bahrami & Jean-Philippe Martin & Gaël Maranzana & Serge Pierfederici & Mathieu Weber & Farid Meibody-Tabar & Majid Zandi, 2020. "Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System," Mathematics, MDPI, vol. 8(5), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1632-:d:153920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.