IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124009523.html
   My bibliography  Save this article

Review of electrochemical impedance spectroscopy in fault diagnosis for proton exchange membrane fuel cells

Author

Listed:
  • Ma, Yangyang
  • Wang, Xueyuan
  • Yuan, Hao
  • Chang, Guofeng
  • Zhu, Jiangong
  • Dai, Haifeng
  • Wei, Xuezhe

Abstract

Timely and efficient fault diagnosis is crucial for improving the performance, durability, and lifespan of onboard proton exchange membrane fuel cell (PEMFC) systems. Electrochemical impedance spectroscopy (EIS) provides effective information about the dynamic reaction processes, which has been widely used for fault diagnosis of electrochemical systems. However, no reviews have comprehensively summarized the recent advances of EIS in fault diagnosis for PEMFCs from the perspectives of system and onboard. Motivated by the literature gap, this review provides a state-of-the-art understanding of EIS in onboard fault diagnosis for PEMFC systems, consisting of five main parts: powerful tool, calculation methods, measurement systems, diagnosis applications, and in-depth outlook. Innovative methods for utilizing EIS in fault diagnosis for onboard PEMFC systems include fast impedance acquisition, applications of nonlinear EIS, stack-single-partitioned impedance measurement, and development of fault diagnosis algorithms. The challenges related to the fast impedance acquisition as well as fault diagnosis challenges associated with nonlinear, partitioned, and coupled characteristics of PEMFCs need to be further addressed. The aim of this review is to fill the gap, to provide a comprehensive review and fresh perspectives, and to contribute to the studies which are focus on EIS in onboard fault diagnosis for PEMFC systems.

Suggested Citation

  • Ma, Yangyang & Wang, Xueyuan & Yuan, Hao & Chang, Guofeng & Zhu, Jiangong & Dai, Haifeng & Wei, Xuezhe, 2025. "Review of electrochemical impedance spectroscopy in fault diagnosis for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009523
    DOI: 10.1016/j.rser.2024.115226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Maosong Fan & Mengmeng Geng & Kai Yang & Mingjie Zhang & Hao Liu, 2023. "State of Health Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Jia, Fei & Tian, Xiaodi & Liu, Fengfeng & Ye, Junjie & Yang, Chengpeng, 2023. "Oxidant starvation under various operating conditions on local and transient performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 331(C).
    3. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Li, Sida & Wei, Xuezhe & Jiang, Shangfeng & Yuan, Hao & Ming, Pingwen & Wang, Xueyuan & Dai, Haifeng, 2022. "Hydrogen crossover diagnosis for fuel cell stack: An electrochemical impedance spectroscopy based method," Applied Energy, Elsevier, vol. 325(C).
    5. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    6. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    7. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    9. H. Eduardo Ariza & Antonio Correcher & Carlos Sánchez & Ángel Pérez-Navarro & Emilio García, 2018. "Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm," Energies, MDPI, vol. 11(8), pages 1-15, August.
    10. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    11. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Jiaping Xie & Chao Wang & Wei Zhu & Hao Yuan, 2021. "A Multi-Stage Fault Diagnosis Method for Proton Exchange Membrane Fuel Cell Based on Support Vector Machine with Binary Tree," Energies, MDPI, vol. 14(20), pages 1-22, October.
    13. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    14. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    15. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
    17. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    18. Furqan A. Abbas & Thealfaqar A. Abdul-Jabbar & Adel A. Obed & Anton Kersten & Manuel Kuder & Thomas Weyh, 2023. "A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications," Energies, MDPI, vol. 16(8), pages 1-34, April.
    19. Ying Da Wang & Quentin Meyer & Kunning Tang & James E. McClure & Robin T. White & Stephen T. Kelly & Matthew M. Crawford & Francesco Iacoviello & Dan J. L. Brett & Paul R. Shearing & Peyman Mostaghimi, 2023. "Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    21. Zhong, Di & Lin, Rui & Jiang, Zhenghua & Zhu, Yike & Liu, Dengchen & Cai, Xin & Chen, Liang, 2020. "Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations," Applied Energy, Elsevier, vol. 264(C).
    22. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    23. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    24. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    25. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    26. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    27. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.
    28. Saadi, R. & Hammoudi, M.Y. & Kraa, O. & Ayad, M.Y. & Bahri, M., 2020. "A robust control of a 4-leg floating interleaved boost converter for fuel cell electric vehicle application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 32-47.
    29. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    30. Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
    31. Arunkumari, T. & Indragandhi, V., 2017. "An overview of high voltage conversion ratio DC-DC converter configurations used in DC micro-grid architectures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 670-687.
    32. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    33. Yuan, Hao & Dai, Haifeng & Ming, Pingwen & Li, Sida & Wei, Xuezhe, 2022. "A new insight into the effects of agglomerate parameters on internal dynamics of proton exchange membrane fuel cell by an advanced impedance dimension model," Energy, Elsevier, vol. 253(C).
    34. Zhenkun Wang & Xianjin Su & Nianyin Zeng & Jiahui Jiang, 2024. "Overview of Isolated Bidirectional DC–DC Converter Topology and Switching Strategies for Electric Vehicle Applications," Energies, MDPI, vol. 17(10), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Lei & Zhang, Xuexia & Jiang, Yu & Dong, Sidi & Huang, Ruike & Liao, Hongbo & Tang, Shuangxi, 2025. "Degradation analysis of dynamic voltage response characteristics of proton exchange membrane fuel cells for health evaluation under dynamic load," Applied Energy, Elsevier, vol. 389(C).
    2. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    3. Zhang, Xuexia & Huang, Lei & Jiang, Yu & Lin, Long & Liao, Hongbo & Liu, Wentao, 2024. "Investigation of nonlinear accelerated degradation mechanism in fuel cell stack under dynamic driving cycles from polarization processes," Applied Energy, Elsevier, vol. 355(C).
    4. Xia, Zhifeng & Chen, Huicui & Li, Weihong & Zhang, Ruirui & Xu, Yiming & Zhang, Tong & Pei, Pucheng, 2024. "Characterization and analysis of current distribution for oxygen starvation diagnosis: A research based on segmented PEMFC technology," Renewable Energy, Elsevier, vol. 237(PC).
    5. Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
    6. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    7. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    8. Wang, Yonggang & Yu, Yadong & Ma, Yuanchu & Shi, Jie, 2025. "Lithium-ion battery health state estimation based on improved snow ablation optimization algorithm-deep hybrid kernel extreme learning machine," Energy, Elsevier, vol. 323(C).
    9. Zhang, Zehui & He, Ningxin & Huo, Weiwei & Xu, Xiaobin & Sun, Chao & Li, Jianwei, 2025. "Privacy preserving federated learning for proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    10. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    11. Soo-Bin Han & Hwanyeong Oh & Won-Yong Lee & Jinyeon Won & Suyong Chae & Jongbok Baek, 2021. "On-Line EIS Measurement for High-Power Fuel Cell Systems Using Simulink Real-Time," Energies, MDPI, vol. 14(19), pages 1-14, September.
    12. Yu, Yongsheng & Zheng, Weibo & Li, Bing & Zhang, Cunman & Ming, Pingwen, 2025. "A comprehensive review of cold start in proton-exchange membrane fuel cells: Challenges, strategies, and prospects," Applied Energy, Elsevier, vol. 390(C).
    13. Ko, Taehwan & Kim, Dukyong & Park, Jaewoong & Lee, Seung Hwan, 2025. "Physics-informed neural network for long-term prognostics of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 382(C).
    14. Yu He & Norasage Pattanadech & Kasiean Sukemoke & Minling Pan & Lin Chen, 2025. "The State of Health Estimation of Retired Lithium-Ion Batteries Using a Multi-Input Metabolic Gated Recurrent Unit," Energies, MDPI, vol. 18(5), pages 1-21, February.
    15. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    16. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    17. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    18. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    19. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    20. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.