IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005561.html
   My bibliography  Save this article

Data-driven health state estimation and remaining useful life prediction of fuel cells

Author

Listed:
  • Song, Ke
  • Huang, Xing
  • Huang, Pengyu
  • Sun, Hui
  • Chen, Yuhui
  • Huang, Dongya

Abstract

Proton exchange membrane fuel cells (PEMFCs) can revolutionise transportation energy and promote environmentally friendly development. The purpose of this study is to predict the state of health (SOH) of PEMFCs and provide guidance for fuel cell maintenance. Under changing power demand situations, a practical method based on the Fréchet distance is proposed to predict the SOH, along with an empirical model to differentiate between the running-in and degradation periods. The proposed method does not require complex and expensive testing instruments and has a relative error of approximately 4.3 %. A voltage drop prediction model is established for steady power demand situations using the particle swarm optimisation-extreme learning machine (PSO-ELM) algorithm. Different activation functions and hidden layer neurons are investigated to enhance prediction accuracy. This study shows that the model effectively tracks the decreasing trend in the transmission voltage of the PEMFC stack. Additionally, a comprehensive analysis framework is developed to address the issue of the possibility of missing system parameters in practical applications. The influence of the system parameters on voltage drop prediction is thoroughly analysed, and the necessary parameters for accurate prediction are defined, providing theoretical guidance for practical monitoring and data collection.

Suggested Citation

  • Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005561
    DOI: 10.1016/j.renene.2024.120491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.