IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics030626192500697x.html
   My bibliography  Save this article

Degradation prediction of PEM fuel cell using LSTM based on Gini gamma correlation coefficient and improved sand cat swarm optimization under dynamic operating conditions

Author

Listed:
  • Huang, Ruike
  • Zhang, Xuexia
  • Dong, Sidi
  • Huang, Lei
  • Li, Yuan

Abstract

Accurate longevity prediction is crucial for the optimal functioning of Proton Exchange Membrane Fuel Cells (PEMFC). This paper proposes the relative voltage loss rate (RVLR) as a novel aging indicator to overcome the limitations of traditional static indicators like voltage and power, which fall short under dynamic operating conditions. An innovative approach using an LSTM neural network model enhanced by Improved Sand Cat Swarm Optimization (ISCSO) and the Gini Gamma Correlation Coefficient method (GG) is presented for predicting PEMFC degradation across variable conditions. This method first conducts a Gini Gamma correlation analysis, then employs the LSTM network to forge a degradation prediction model for the PEMFC, optimizing the number of neurons in the hidden layer, initial weights, and iteration count through ISCSO. Comparative discussions with eight alternative methods and validations through aging experiments on PEMFC under two different conditions underscore the accuracy of this new approach in various application environments. Specifically, the ISCSO-LSTM model achieves R2 values of 0.9713 and 0.9822, MAE values of 0.0026 and 0.0019, and RMSE values of 0.0050 and 0.0032 across the two different datasets, respectively. These results demonstrate the robustness, accuracy, and reliability of the proposed method for accurate degradation prediction.

Suggested Citation

  • Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Li, Yuan, 2025. "Degradation prediction of PEM fuel cell using LSTM based on Gini gamma correlation coefficient and improved sand cat swarm optimization under dynamic operating conditions," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s030626192500697x
    DOI: 10.1016/j.apenergy.2025.125967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500697X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Benaggoune, Khaled & Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine, 2022. "A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 313(C).
    2. Zhou, Daming & Gao, Fei & Breaz, Elena & Ravey, Alexandre & Miraoui, Abdellatif, 2017. "Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach," Energy, Elsevier, vol. 138(C), pages 1175-1186.
    3. Pagnini, Luisa & Bracco, Stefano & Delfino, Federico & de-Simón-Martín, Miguel, 2024. "Levelized cost of electricity in renewable energy communities: Uncertainty propagation analysis," Applied Energy, Elsevier, vol. 366(C).
    4. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    5. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    6. Zhang, Xuexia & Huang, Lei & Jiang, Yu & Lin, Long & Liao, Hongbo & Liu, Wentao, 2024. "Investigation of nonlinear accelerated degradation mechanism in fuel cell stack under dynamic driving cycles from polarization processes," Applied Energy, Elsevier, vol. 355(C).
    7. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    8. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    9. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    10. Hua, Zhiguang & Zheng, Zhixue & Péra, Marie-Cécile & Gao, Fei, 2020. "Remaining useful life prediction of PEMFC systems based on the multi-input echo state network," Applied Energy, Elsevier, vol. 265(C).
    11. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    12. Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
    13. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    14. Huang, Ruike & Peng, Yiqiang & Yang, Jibin & Xu, Xiaohui & Deng, Pengyi, 2022. "Correlation analysis and prediction of PEM fuel cell voltage during start-stop operation based on real-world driving data," Energy, Elsevier, vol. 260(C).
    15. Li, Changzhi & Lin, Wei & Wu, Hangyu & Li, Yang & Zhu, Wenchao & Xie, Changjun & Gooi, Hoay Beng & Zhao, Bo & Zhang, Leiqi, 2023. "Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model," Renewable Energy, Elsevier, vol. 215(C).
    16. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    17. Bahrami, Milad & Martin, Jean-Philippe & Maranzana, Gaël & Pierfederici, Serge & Weber, Mathieu & Didierjean, Sophie, 2022. "Fuel cell management system: An approach to increase its durability," Applied Energy, Elsevier, vol. 306(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Liu & Weihong Zang & Wentao Zhang & Yang Zhang & Yuqi Tong & Yanbiao Feng, 2025. "Steady-State Model Enabled Dynamic PEMFC Performance Degradation Prediction via Recurrent Neural Network," Energies, MDPI, vol. 18(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
    2. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    3. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    4. Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Liao, Hongbo & Li, Yuan, 2024. "A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation," Renewable Energy, Elsevier, vol. 237(PC).
    5. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    6. Tianxiang Wang & Hongliang Zhou & Chengwei Zhu, 2022. "A Short-Term and Long-Term Prognostic Method for PEM Fuel Cells Based on Gaussian Process Regression," Energies, MDPI, vol. 15(13), pages 1-17, July.
    7. Yang, Yang & Yu, Xiaoran & Zhu, Wenchao & Xie, Changjun & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Huang, Liang & Zhang, Ruiming, 2023. "Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification," Renewable Energy, Elsevier, vol. 219(P2).
    8. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    10. Zhang, Tian & Hou, Zhengmeng & Li, Xiaoqin & Chen, Qianjun & Wang, Qichen & Lüddeke, Christian & Wu, Lin & Wu, Xuning & Sun, Wei, 2025. "A novel multivariable prognostic approach for PEMFC degradation and remaining useful life prediction using random forest and temporal convolutional network," Applied Energy, Elsevier, vol. 385(C).
    11. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    12. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    14. Li, Haolong & Chen, Qihong & Zhang, Liyan & Liu, Li & Xiao, Peng, 2023. "Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory," Applied Energy, Elsevier, vol. 344(C).
    15. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    16. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    17. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    19. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2021. "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, Elsevier, vol. 179(C), pages 802-814.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s030626192500697x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.