IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3156-d182860.html
   My bibliography  Save this article

Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications

Author

Listed:
  • Miran Rodič

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, SI-2000 Maribor, Slovenia)

  • Miro Milanovič

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, SI-2000 Maribor, Slovenia)

  • Mitja Truntič

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, SI-2000 Maribor, Slovenia)

  • Benjamin Ošlaj

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, SI-2000 Maribor, Slovenia)

Abstract

The paper presents a Switched-Capacitor Boost DC-DC Converter (SC-BC) which can be used in energy harvesting applications using thermoelectric generators (TEGs) with low output voltage, low power and a significant internal resistance. It consists of a switching capacitor circuit, where MOSFETs are used as switches, and a boost stage. The converter is a modification of a previously presented scheme in which diodes are used in the switched capacitor stage. A higher voltage gain and an increased efficiency can thus be achieved. The model of the converter was developed considering the internal resistance of the TEG and boost stage inductor. A comparison with the diode based converter is shown, with consideration of the TEG internal resistance. Calculation is presented of the main passive components. A control algorithm is also proposed and evaluated. It is based on a linearization approach, and designed for output voltage and inductor current control. The operation of both converter and control are verified with the simulation and experimental results.

Suggested Citation

  • Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3156-:d:182860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    2. Sanjeevikumar Padmanaban & Mahajan Sagar Bhaskar & Pandav Kiran Maroti & Frede Blaabjerg & Viliam Fedák, 2018. "An Original Transformer and Switched-Capacitor (T & SC)-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Bo," Energies, MDPI, vol. 11(4), pages 1-23, March.
    3. Van-Thuan Tran & Minh-Khai Nguyen & Youn-Ok Choi & Geum-Bae Cho, 2018. "Switched-Capacitor-Based High Boost DC-DC Converter," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.
    5. Yong-Seng Wong & Jiann-Fuh Chen & Kuo-Bin Liu & Yi-Ping Hsieh, 2017. "A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-17, March.
    6. Chih-Lung Shen & Hong-Yu Chen & Po-Chieh Chiu, 2015. "Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems," Energies, MDPI, vol. 8(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akeel Othman & Jaromir Hrad & Jiri Hajek & Dusan Maga, 2022. "Control Strategies of Hybrid Energy Harvesting—A Survey," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    2. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2019. "Zero Current Switching Switched-Capacitors Balancing Circuit for Energy Storage Cell Equalization and Its Associated Hybrid Circuit with Classical Buck-Boost," Energies, MDPI, vol. 12(14), pages 1-15, July.
    3. Alencar Franco de Souza & Fernando Lessa Tofoli & Enio Roberto Ribeiro, 2021. "Switched Capacitor DC-DC Converters: A Survey on the Main Topologies, Design Characteristics, and Applications," Energies, MDPI, vol. 14(8), pages 1-33, April.
    4. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. Se-Un Shin, 2019. "An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media," Energies, MDPI, vol. 12(8), pages 1-19, April.
    6. Tao Yang & Yong Liao, 2019. "Discrete Sliding Mode Control Strategy for Start-Up and Steady-State of Boost Converter," Energies, MDPI, vol. 12(15), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    2. Seok-Kyoon Kim, 2018. "Passivity-Based Robust Output Voltage Tracking Control of DC/DC Boost Converter for Wind Power Systems," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. Kyunghwan Choi & Kyung-Soo Kim & Seok-Kyoon Kim, 2019. "Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer," Energies, MDPI, vol. 12(8), pages 1-14, April.
    4. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    5. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    6. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    7. Héctor Hidalgo & Rodolfo Orosco & Héctor Huerta & Nimrod Vázquez & Claudia Hernández & Sergio Pinto, 2023. "A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications," Energies, MDPI, vol. 16(13), pages 1-23, June.
    8. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Ping-Sheng Huang, 2023. "Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems," Energies, MDPI, vol. 16(9), pages 1-23, May.
    9. Se-Un Shin, 2019. "An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media," Energies, MDPI, vol. 12(8), pages 1-19, April.
    10. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    11. Cuidong Xu & Ka Wai Eric Cheng, 2022. "Topology and Formation of Current Source Step Down Resonant Switched Inductor Converters," Energies, MDPI, vol. 15(5), pages 1-20, February.
    12. Yicheng Liu & Jieping Wang & Haiyan Tu, 2019. "Design and Implementation of Finite Time Nonsingular Fast Terminal Sliding Mode Control for a Novel High Step-Up DC-DC Converter," Energies, MDPI, vol. 12(9), pages 1-16, May.
    13. Feng Wang & Yutao Luo & Hongluo Li & Xiaotong Xu, 2019. "Switching Characteristics Optimization of Two-Phase Interleaved Bidirectional DC/DC for Electric Vehicles," Energies, MDPI, vol. 12(3), pages 1-14, January.
    14. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    15. Ioana-Monica Pop-Calimanu & Septimiu Lica & Sorin Popescu & Dan Lascu & Ioan Lie & Radu Mirsu, 2019. "A New Hybrid Inductor-Based Boost DC-DC Converter Suitable for Applications in Photovoltaic Systems," Energies, MDPI, vol. 12(2), pages 1-32, January.
    16. M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.
    17. Van-Thuan Tran & Minh-Khai Nguyen & Youn-Ok Choi & Geum-Bae Cho, 2018. "Switched-Capacitor-Based High Boost DC-DC Converter," Energies, MDPI, vol. 11(4), pages 1-15, April.
    18. Yu-En Wu & Yu-Lin Wu, 2016. "Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems," Energies, MDPI, vol. 9(10), pages 1-16, September.
    19. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Yu-Hua Chen, 2020. "Interleaved High Step-Up DC–DC Converter with Voltage-Lift and Voltage-Stack Techniques for Photovoltaic Systems," Energies, MDPI, vol. 13(10), pages 1-20, May.
    20. Javed Ahmad & Mohammad Zaid & Adil Sarwar & Chang-Hua Lin & Mohammed Asim & Raj Kumar Yadav & Mohd Tariq & Kuntal Satpathi & Basem Alamri, 2021. "A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications," Energies, MDPI, vol. 14(9), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3156-:d:182860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.