IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1412-d222202.html
   My bibliography  Save this article

Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer

Author

Listed:
  • Kyunghwan Choi

    (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 291, Korea)

  • Kyung-Soo Kim

    (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 291, Korea)

  • Seok-Kyoon Kim

    (Department of Creative Convergence Engineering, Hanbat National University, Daejeon 341-58, Korea)

Abstract

This study seeks an advanced sensor fault diagnosis algorithm for DC/DC boost converters governed by nonlinear dynamics with parameter and load uncertainties. The proposed algorithm is designed with a combination of proportional-type state observer and disturbance observer (DOB) without integral actions. The convergence, performance recovery and offset-free properties of the proposed algorithm are derived by analyzing the estimation error dynamics. An optimization process to assign the optimal feedback gain for the state observer is also provided. Finally, a fault diagnosis criteria is introduced to identify the location and type of sensor faults online using normalized residuals. The experimental results verify the effectiveness of the suggested technique under variable operating conditions and three types of sensor faults using a prototype 3 kW DC/DC boost converter.

Suggested Citation

  • Kyunghwan Choi & Kyung-Soo Kim & Seok-Kyoon Kim, 2019. "Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer," Energies, MDPI, vol. 12(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1412-:d:222202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Liu & Ke Ma & Poh Chiang Loh & Frede Blaabjerg, 2015. "Online Fault Identification Based on an Adaptive Observer for Modular Multilevel Converters Applied to Wind Power Generation Systems," Energies, MDPI, vol. 8(7), pages 1-21, July.
    2. Seok-Kyoon Kim, 2018. "Passivity-Based Robust Output Voltage Tracking Control of DC/DC Boost Converter for Wind Power Systems," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. June-Seok Lee & Kyo Beum Lee, 2013. "Variable DC-Link Voltage Algorithm with a Wide Range of Maximum Power Point Tracking for a Two-String PV System," Energies, MDPI, vol. 6(1), pages 1-21, January.
    4. Wei Li & Gengyin Li & Rong Zeng & Kai Ni & Yihua Hu & Huiqing Wen, 2018. "The Fault Detection, Localization, and Tolerant Operation of Modular Multilevel Converters with an Insulated Gate Bipolar Transistor (IGBT) Open Circuit Fault," Energies, MDPI, vol. 11(4), pages 1-20, April.
    5. Li Zhai & Tao Zhang & Yu Cao & Sipeng Yang & Steven Kavuma & Huiyuan Feng, 2018. "Conducted EMI Prediction and Mitigation Strategy Based on Transfer Function for a High-Low Voltage DC-DC Converter in Electric Vehicle," Energies, MDPI, vol. 11(5), pages 1-17, April.
    6. Sanjeevikumar Padmanaban & Mahajan Sagar Bhaskar & Pandav Kiran Maroti & Frede Blaabjerg & Viliam Fedák, 2018. "An Original Transformer and Switched-Capacitor (T & SC)-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Bo," Energies, MDPI, vol. 11(4), pages 1-23, March.
    7. Van-Thuan Tran & Minh-Khai Nguyen & Youn-Ok Choi & Geum-Bae Cho, 2018. "Switched-Capacitor-Based High Boost DC-DC Converter," Energies, MDPI, vol. 11(4), pages 1-15, April.
    8. Yingning Qiu & Hongxin Jiang & Yanhui Feng & Mengnan Cao & Yong Zhao & Dan Li, 2016. "A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions," Energies, MDPI, vol. 9(7), pages 1-15, July.
    9. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    10. Huakun Bi & Ping Wang & Zhishuang Wang, 2018. "Common Grounded H-Type Bidirectional DC-DC Converter with a Wide Voltage Conversion Ratio for a Hybrid Energy Storage System," Energies, MDPI, vol. 11(2), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun Lim & Seok-Kyoon Kim & Yonghun Kim, 2021. "Active Damping Injection Output Voltage Control with Dynamic Current Cut-Off Frequency for DC/DC Buck Converters," Energies, MDPI, vol. 14(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seok-Kyoon Kim, 2018. "Passivity-Based Robust Output Voltage Tracking Control of DC/DC Boost Converter for Wind Power Systems," Energies, MDPI, vol. 11(6), pages 1-13, June.
    2. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    3. Jikai Chen & Yanhui Dou & Yang Li & Jiang Li & Guoqing Li, 2016. "A Transient Fault Recognition Method for an AC-DC Hybrid Transmission System Based on MMC Information Fusion," Energies, MDPI, vol. 10(1), pages 1-20, December.
    4. Lei Yu & Youtong Zhang & Wenqing Huang & Khaled Teffah, 2017. "A Fast-Acting Diagnostic Algorithm of Insulated Gate Bipolar Transistor Open Circuit Faults for Power Inverters in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    5. Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2019. "The Conducted Emission Attenuation of Micro-Inverters for Nanogrid Systems," Sustainability, MDPI, vol. 12(1), pages 1-31, December.
    6. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    7. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    8. Se-Un Shin, 2019. "An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media," Energies, MDPI, vol. 12(8), pages 1-19, April.
    9. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    10. Fayun Zhou & An Luo & Yan Li & Qianming Xu & Zhixing He & Josep M. Guerrero, 2017. "Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters," Energies, MDPI, vol. 10(4), pages 1-23, April.
    11. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    12. Yiqi Liu & Danhua Li & Yu Jin & Qingbo Wang & Wenlong Song, 2018. "Research on Unbalance Fault-Tolerant Control Strategy of Modular Multilevel Photovoltaic Grid-Connected Inverter," Energies, MDPI, vol. 11(6), pages 1-18, May.
    13. Cuidong Xu & Ka Wai Eric Cheng, 2022. "Topology and Formation of Current Source Step Down Resonant Switched Inductor Converters," Energies, MDPI, vol. 15(5), pages 1-20, February.
    14. Zhijie Liu & Kejun Li & Yuanyuan Sun & Jinyu Wang & Zhuodi Wang & Kaiqi Sun & Meiyan Wang, 2018. "A Steady-State Analysis Method for Modular Multilevel Converters Connected to Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems," Energies, MDPI, vol. 11(2), pages 1-31, February.
    15. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    16. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    17. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie, 2015. "Dual Search Maximum Power Point (DSMPP) Algorithm Based on Mathematical Analysis under Shaded Conditions," Energies, MDPI, vol. 8(10), pages 1-31, October.
    18. Chien-Chun Huang & Tsung-Lin Tsai & Yao-Ching Hsieh & Huang-Jen Chiu, 2018. "A Bilateral Zero-Voltage Switching Bidirectional DC-DC Converter with Low Switching Noise," Energies, MDPI, vol. 11(10), pages 1-18, October.
    19. Ali Q. Al-Shetwi & Walid K. Issa & Raed F. Aqeil & Taha Selim Ustun & Hussein M. K. Al-Masri & Khaled Alzaareer & Maher G. M. Abdolrasol & Majid A. Abdullah, 2022. "Active Power Control to Mitigate Frequency Deviations in Large-Scale Grid-Connected PV System Using Grid-Forming Single-Stage Inverters," Energies, MDPI, vol. 15(6), pages 1-21, March.
    20. Feng Wang & Yutao Luo & Hongluo Li & Xiaotong Xu, 2019. "Switching Characteristics Optimization of Two-Phase Interleaved Bidirectional DC/DC for Electric Vehicles," Energies, MDPI, vol. 12(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1412-:d:222202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.