IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p120-d88244.html
   My bibliography  Save this article

Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions

Author

Listed:
  • Jian Zhao

    (College of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Xuesong Zhou

    (School of Electrical Engineering, Tianjin University of Technology, Tianjin 300384, China)

  • Youjie Ma

    (School of Electrical Engineering, Tianjin University of Technology, Tianjin 300384, China)

  • Yiqi Liu

    (College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)

Abstract

Partial shading (PS) is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV) system. With PS, the system usually exhibits multiple-peak output power characteristics, but single-peak is also possible under special PS conditions. In fact it is shown that the partial shading condition (PSC) is the necessary but not sufficient condition for multiple-peak. Based on circuit analysis, this paper shows that the number of peak points can be determined by short-circuit currents and maximum-power point currents of all the arrays in series. Then the principle is established based on which the number of the peak points is to be determined. Furthermore, based on the dynamic characteristic of solar array, this paper establishes the rule for determination of the relative position of the global maximum power point (GMPP). In order to track the GMPP within an appropriate period, a reliable technique and the corresponding computer algorithm are developed for GMPP tracking (GMPPT) control. It exploits a definable nonlinear relation has been found between variable environmental parameters and the output current of solar arrays at every maximum power point, obtained based on the dynamic performance corresponding to PSC. Finally, the proposed method is validated with MATLAB ® /Simulink ® simulations and actual experiments. It is shown that the GMPPT of a PV generation system is indeed realized efficiently in a realistic environment with partial shading conditions.

Suggested Citation

  • Jian Zhao & Xuesong Zhou & Youjie Ma & Yiqi Liu, 2017. "Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions," Energies, MDPI, vol. 10(1), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:120-:d:88244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Seyedmahmoudian & Ben Horan & Rasoul Rahmani & Aman Maung Than Oo & Alex Stojcevski, 2016. "Efficient Photovoltaic System Maximum Power Point Tracking Using a New Technique," Energies, MDPI, vol. 9(3), pages 1-18, March.
    2. Balato, M. & Costanzo, L. & Vitelli, M., 2015. "Series–Parallel PV array re-configuration: Maximization of the extraction of energy and much more," Applied Energy, Elsevier, vol. 159(C), pages 145-160.
    3. Luigi Piegari & Renato Rizzo & Ivan Spina & Pietro Tricoli, 2015. "Optimized Adaptive Perturb and Observe Maximum Power Point Tracking Control for Photovoltaic Generation," Energies, MDPI, vol. 8(5), pages 1-19, April.
    4. Her-Terng Yau & Chen-Han Wu, 2011. "Comparison of Extremum-Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems," Energies, MDPI, vol. 4(12), pages 1-16, December.
    5. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    6. June-Seok Lee & Kyo Beum Lee, 2013. "Variable DC-Link Voltage Algorithm with a Wide Range of Maximum Power Point Tracking for a Two-String PV System," Energies, MDPI, vol. 6(1), pages 1-21, January.
    7. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei Ye, Song & Hua Liu, Yi & Chung Wang, Shun & Yu Pai, Hung, 2022. "A novel global maximum power point tracking algorithm based on Nelder-Mead simplex technique for complex partial shading conditions," Applied Energy, Elsevier, vol. 321(C).
    2. Eduardo Manuel Godinho Rodrigues & Radu Godina & Mousa Marzband & Edris Pouresmaeil, 2018. "Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity," Energies, MDPI, vol. 11(11), pages 1-21, October.
    3. Václav Beránek & Tomáš Olšan & Martin Libra & Vladislav Poulek & Jan Sedláček & Minh-Quan Dang & Igor I. Tyukhov, 2018. "New Monitoring System for Photovoltaic Power Plants’ Management," Energies, MDPI, vol. 11(10), pages 1-13, September.
    4. Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
    5. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie, 2015. "Dual Search Maximum Power Point (DSMPP) Algorithm Based on Mathematical Analysis under Shaded Conditions," Energies, MDPI, vol. 8(10), pages 1-31, October.
    2. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie & Muhammad Ammirrul Atiqi Mohd Zainuri, 2016. "Implementing a Novel Hybrid Maximum Power Point Tracking Technique in DSP via Simulink/MATLAB under Partially Shaded Conditions," Energies, MDPI, vol. 9(2), pages 1-25, January.
    3. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    5. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    6. Balamurugan, M. & Sahoo, Sarat Kumar & Sukchai, Sukruedee, 2017. "Application of soft computing methods for grid connected PV system: A technological and status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1493-1508.
    7. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    8. Mehdi Seyedmahmoudian & Gokul Sidarth Thirunavukkarasu & Elmira Jamei & Tey Kok Soon & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    9. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    10. Marco Balato & Carlo Petrarca, 2020. "The Impact of Reconfiguration on the Energy Performance of the Distributed Maximum Power Point Tracking Approach in PV Plants," Energies, MDPI, vol. 13(6), pages 1-19, March.
    11. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    12. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    13. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    14. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    15. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    16. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    17. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    18. Cho, Younghoon, 2017. "Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller," Renewable Energy, Elsevier, vol. 101(C), pages 168-181.
    19. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    20. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:120-:d:88244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.