IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5281-d867925.html
   My bibliography  Save this article

A Bidirectional DHC-LT Resonant DC-DC Converter with Research on Improved Fundamental Harmonic Analysis Considering Phase Angle of Load Impedance

Author

Listed:
  • Shuhuai Zhang

    (Faculty of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
    These authors contributed equally to this work.)

  • Xuezhi Wu

    (Faculty of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
    These authors contributed equally to this work.)

  • Ziqian Zhang

    (Beijing Dynamic Power Co., Ltd., Beijing 100070, China
    These authors contributed equally to this work.)

  • Xuejiang Zhang

    (Beijing Dynamic Power Co., Ltd., Beijing 100070, China
    These authors contributed equally to this work.)

Abstract

This paper presents a novel 400 V–50 V bidirectional DHC-LT resonant DC-DC converter. By adding a resonant capacitor and an auxiliary transformer based on LLC, zero-voltage switching (ZVS) and zero-current switching (ZCS) are achieved, while the output voltage gain range is broadened in two directions. Operation principles and robustness are discussed with equations. Then, the error factor of fundamental harmonic analysis (FHA) in resonant converters is analyzed. Considering the phase difference between the output voltage and resonant tank current, an improved method is proposed to describe the behavior of the DHC-LT converter more precisely. A comparison is conducted to prove the effectiveness of the proposed FHA. Furthermore, in order to reduce the output voltage and provide a ripple-free charging current, a fixed-frequency phase-shift strategy is introduced in the DHC-LT converter. ZVS can be realized through the reasonable design of dead time and phase-shift angle. Finally, a 2.5 kW prototype of the DHC-LT resonant DC-DC converter with a digital signal processor (DSP) platform and a battery/PV DC test system is established in the lab to validate the theoretical analysis.

Suggested Citation

  • Shuhuai Zhang & Xuezhi Wu & Ziqian Zhang & Xuejiang Zhang, 2022. "A Bidirectional DHC-LT Resonant DC-DC Converter with Research on Improved Fundamental Harmonic Analysis Considering Phase Angle of Load Impedance," Energies, MDPI, vol. 15(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5281-:d:867925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bing-Zhang Chen & Hsuan Liao & Linda Chen & Jiann-Fuh Chen, 2022. "Design and Implementation of the Bidirectional DC-DC Converter with Rapid Energy Conversion," Energies, MDPI, vol. 15(3), pages 1-19, January.
    2. Muhammad Faisal Fiaz & Sandro Calligaro & Mattia Iurich & Roberto Petrella, 2022. "Analytical Modeling and Control of Dual Active Bridge Converter Considering All Phase-Shifts," Energies, MDPI, vol. 15(8), pages 1-32, April.
    3. Eser Çalışkan & Ozgur Ustun, 2022. "Smart Efficiency Tracking for Novel Switch—LLC Converter for Battery Charging Applications," Energies, MDPI, vol. 15(5), pages 1-21, March.
    4. Michal Gierczynski & Lech M. Grzesiak & Arkadiusz Kaszewski, 2021. "Cascaded Voltage and Current Control for a Dual Active Bridge Converter with Current Filters," Energies, MDPI, vol. 14(19), pages 1-30, September.
    5. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Palmiro & Ruben B. Godoy & Tiago H. d. A. Mateus & Nicholas D. de Andrade, 2023. "A 600 W Photovoltaic Groundwater Pumping System Based on LLC Converter and Constant Voltage MPPT," Energies, MDPI, vol. 16(13), pages 1-12, June.
    2. Hsuan Liao & Yi-Tsung Chen & Linda Chen & Jiann-Fuh Chen, 2022. "Development of a Bidirectional DC–DC Converter with Rapid Energy Bidirectional Transition Technology," Energies, MDPI, vol. 15(13), pages 1-19, June.
    3. Seok-Kyoon Kim, 2018. "Passivity-Based Robust Output Voltage Tracking Control of DC/DC Boost Converter for Wind Power Systems," Energies, MDPI, vol. 11(6), pages 1-13, June.
    4. Chih-Lung Shen & Li-Zhong Chen & Guan-Yu Chen & Ching-Ming Yang, 2022. "Multi-Port Multi-Directional Converter with Multi-Mode Operation and Leakage Energy Recycling for Green Energy Processing," Energies, MDPI, vol. 15(15), pages 1-26, August.
    5. Chien-Chun Huang & Tsung-Lin Tsai & Yao-Ching Hsieh & Huang-Jen Chiu, 2018. "A Bilateral Zero-Voltage Switching Bidirectional DC-DC Converter with Low Switching Noise," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Kyunghwan Choi & Kyung-Soo Kim & Seok-Kyoon Kim, 2019. "Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer," Energies, MDPI, vol. 12(8), pages 1-14, April.
    7. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    8. Jing-Yuan Lin & Yi-Feng Lin & Sih-Yi Lee, 2019. "A Novel Multi-Element Resonant Converter with Self-Driven Synchronous Rectification," Energies, MDPI, vol. 12(4), pages 1-10, February.
    9. Xinwen Zhang & Canlong Wang, 2023. "A Backflow Power Suppression Strategy for Dual Active Bridge Converter Based on Improved Lagrange Method," Energies, MDPI, vol. 16(15), pages 1-17, July.
    10. Mihaiță Gireadă & Dan Hulea & Nicolae Muntean & Octavian Cornea, 2023. "A Common-Ground Bidirectional Hybrid Switched-Capacitor DC–DC Converter with a High Voltage Conversion Ratio," Energies, MDPI, vol. 16(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5281-:d:867925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.