IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p378-d93217.html
   My bibliography  Save this article

A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems

Author

Listed:
  • Yong-Seng Wong

    (Department of Electrical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan
    Power Supply Group, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300, Taiwan)

  • Jiann-Fuh Chen

    (Department of Electrical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan)

  • Kuo-Bin Liu

    (Power Supply Group, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300, Taiwan)

  • Yi-Ping Hsieh

    (Mission Critical Infrastructure Solutions Business Unit, Delta Electronics INC, 39 Section 2, Huan-dong Road, Shanhua Township, Tainan 741, Taiwan)

Abstract

In this study, a novel high step-up DC-DC converter was successfully integrated using coupled inductor and switched capacitor techniques. High step-up DC-DC gain was achieved using a coupled inductor when capacitors charged and discharged energy, respectively. In addition, energy was recovered from the leakage inductance of the coupled inductor by using a passive clamp circuit. Therefore, the voltage stress of the main power switch was almost reduced to 1/7 V o (output voltage). Moreover, the coupled inductor alleviated the reverse-recovery problem of the diode. The proposed circuit efficiency can be further improved and high voltage gain can be achieved. The operation principle and steady-state analysis of the proposed converter were discussed. Finally, a hardware prototype circuit with input voltage of 24 V, output voltage of up to 400 V, and maximum power of 150 W was constructed in a laboratory; the maximum efficiency was almost 96.2%.

Suggested Citation

  • Yong-Seng Wong & Jiann-Fuh Chen & Kuo-Bin Liu & Yi-Ping Hsieh, 2017. "A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:378-:d:93217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/378/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    2. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    3. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    4. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    5. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    6. Héctor Hidalgo & Rodolfo Orosco & Héctor Huerta & Nimrod Vázquez & Claudia Hernández & Sergio Pinto, 2023. "A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications," Energies, MDPI, vol. 16(13), pages 1-23, June.
    7. Yicheng Liu & Jieping Wang & Haiyan Tu, 2019. "Design and Implementation of Finite Time Nonsingular Fast Terminal Sliding Mode Control for a Novel High Step-Up DC-DC Converter," Energies, MDPI, vol. 12(9), pages 1-16, May.
    8. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Yu-Hua Chen, 2020. "Interleaved High Step-Up DC–DC Converter with Voltage-Lift and Voltage-Stack Techniques for Photovoltaic Systems," Energies, MDPI, vol. 13(10), pages 1-20, May.
    9. Flavio Balsamo & Davide Lauria & Fabio Mottola, 2019. "Design and Control of Coupled Inductor DC–DC Converters for MVDC Ship Power Systems," Energies, MDPI, vol. 12(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:378-:d:93217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.