IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2276-d166495.html
   My bibliography  Save this article

Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO 2 -H 2 O Feed Stream

Author

Listed:
  • Petronilla Fragiacomo

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

  • Giuseppe De Lorenzo

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

  • Orlando Corigliano

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

Abstract

Renewable sources and electric distribution network can produce or make available a surplus of electric and thermal energies. The Intermediate Temperature Solid Oxide Electrolyzer (IT-SOE) fed by CO 2 -steam mixtures can store these electric and thermal energies producing CO-H 2 mixtures with high conversion efficiency. Inside the IT-SOE, the CO 2 -steam mixtures are converted into CO-H 2 mixtures and O 2 through cathodic and anodic electrochemical reactions and reverse water gas shift chemical reactions. In this article an IT-SOE stack fed by different types of steam mixtures was tested at different operating temperatures and the stack polarization and electric power curves were detected experimentally. At the highest hydrogen production operating temperature of the stack fed by steam mixtures, the experimental polarization and electric power curves of the stack fed by steam and CO 2 -steam mixtures were compared. A simulation model of the IT-SOE system (stack and furnace) fed by CO 2 -steam mixtures was formulated ad hoc and implemented in a MatLab environment and experimentally validated. At the highest hydrogen production stack operating temperature, the IT-SOE system thermal equilibrium current was evaluated through the simulation model. Moreover, the influence of this current on the IT-SOE system efficiency and the CO-H 2 mixture degree of purity was highlighted.

Suggested Citation

  • Petronilla Fragiacomo & Giuseppe De Lorenzo & Orlando Corigliano, 2018. "Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO 2 -H 2 O Feed Stream," Energies, MDPI, vol. 11(9), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2276-:d:166495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Di Giorgio & Umberto Desideri, 2016. "Potential of Reversible Solid Oxide Cells as Electricity Storage System," Energies, MDPI, vol. 9(8), pages 1-14, August.
    2. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    3. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    4. Sidra Mumtaz & Saima Ali & Saghir Ahmad & Laiq Khan & Syed Zulqadar Hassan & Tariq Kamal, 2017. "Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System," Energies, MDPI, vol. 10(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    2. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.
    3. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    4. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    5. Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
    6. Giuseppe De Lorenzo & Francesco Piraino & Francesco Longo & Giovanni Tinè & Valeria Boscaino & Nicola Panzavecchia & Massimo Caccia & Petronilla Fragiacomo, 2022. "Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 15(19), pages 1-21, September.
    7. Nicu Bizon & Valentin Alexandru Stan & Angel Ciprian Cormos, 2019. "Optimization of the Fuel Cell Renewable Hybrid Power System Using the Control Mode of the Required Load Power on the DC Bus," Energies, MDPI, vol. 12(10), pages 1-15, May.
    8. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    2. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    3. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    4. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    5. Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
    6. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    7. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    8. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    10. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    11. Soolmaz L. Azarmi & Akeem Adeyemi Oladipo & Roozbeh Vaziri & Habib Alipour, 2018. "Comparative Modelling and Artificial Neural Network Inspired Prediction of Waste Generation Rates of Hospitality Industry: The Case of North Cyprus," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    12. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    13. Ngoc Van Trinh & Younghyeon Kim & Hongjip Kim & Sangseok Yu, 2021. "Evaporation of Methanol Solution for a Methanol Steam Reforming System," Energies, MDPI, vol. 14(16), pages 1-15, August.
    14. Rei-Yu Chein & Wen-Hwai Hsu, 2018. "Analysis of Syngas Production from Biogas via the Tri-Reforming Process," Energies, MDPI, vol. 11(5), pages 1-18, April.
    15. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    16. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    19. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    20. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2276-:d:166495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.