IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222026111.html
   My bibliography  Save this article

Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation

Author

Listed:
  • Sun, Yi
  • Qian, Tang
  • Zhu, Jingdong
  • Zheng, Nan
  • Han, Yu
  • Xiao, Gang
  • Ni, Meng
  • Xu, Haoran

Abstract

Reversible solid oxide cell (rSOC) can flexibly switch between the electrolysis mode and the fuel cell mode for electrical energy storage and power generation. For practical application, sweeping gas is needed to bring in the reactants and take out the products timely. In this study, we use steam as anode sweeping gas in electrolysis to decrease the overpotential loss and collect pure O2, which is then used as the fuel cell cathode oxidant. The real fluctuating power generated from solar photovoltaic is used as the power supply, which allows rSOC to generate H2 from 6:45 a.m. to 5:45 p.m. and produce electricity in the night. Compared with the conventional strategy, the proposed system can utilize more than 35% electricity in electrolysis, and its efficiency and total H2 production can be increased by 8% and 50%, respectively. The total power generation and the power density are also increased by 290% and 160%, respectively. Overall, this new strategy results in a doubled round-trip voltage efficiency due to the much-decreased overpotential losses in the electrochemical processes. This study provides a guidance for the optimization of practical rSOC application with dynamic operating conditions.

Suggested Citation

  • Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026111
    DOI: 10.1016/j.energy.2022.125725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Yu & Liao, Shuting & Chen, Shuai & Fang, Huihuang & Zhong, Fulan & Lin, Li & Zhou, Chen & Chen, Chongqi & Cai, Guohui & Au, Chak-Tong & Jiang, Lilong, 2022. "Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation," Applied Energy, Elsevier, vol. 307(C).
    2. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    4. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    5. Chen, Bin & Hajimolana, Yashar S. & Venkataraman, Vikrant & Ni, Meng & Aravind, P.V., 2019. "Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation," Applied Energy, Elsevier, vol. 250(C), pages 558-567.
    6. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    7. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    8. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    9. Srikanth, S. & Heddrich, M.P. & Gupta, S. & Friedrich, K.A., 2018. "Transient reversible solid oxide cell reactor operation – Experimentally validated modeling and analysis," Applied Energy, Elsevier, vol. 232(C), pages 473-488.
    10. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    11. Paolo Di Giorgio & Umberto Desideri, 2016. "Potential of Reversible Solid Oxide Cells as Electricity Storage System," Energies, MDPI, vol. 9(8), pages 1-14, August.
    12. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & Wu, Yiyang & Zhang, Houcheng & Ni, Meng, 2018. "A feasible way to handle the heat management of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 881-890.
    13. Giannoulidis, Sotiris & Venkataraman, Vikrant & Woudstra, Theo & Aravind, P.V., 2020. "Methanol based Solid Oxide Reversible energy storage system – Does it make sense thermodynamically?," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
    2. Zhaojian Liang & Jingyi Wang & Keda Ren & Zhenjun Jiao & Meng Ni & Liang An & Yang Wang & Jinbin Yang & Mengying Li, 2024. "Discovering two general characteristic times of transient responses in solid oxide cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    2. Amladi, Amogh & Venkataraman, Vikrant & Woudstra, Theo & Aravind, P.V., 2024. "Hot air recirculation enlarges efficient operating window of reversible solid oxide cell systems: A thermodynamic study of energy storage using ammonia," Applied Energy, Elsevier, vol. 355(C).
    3. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    4. Yang, Chao & Jing, Xiuhui & Miao, He & Xu, Jingxiang & Lin, Peijian & Li, Ping & Liang, Chaoyu & Wu, Yu & Yuan, Jinliang, 2021. "The physical properties and effects of sintering conditions on rSOFC fuel electrodes evaluated by molecular dynamics simulation," Energy, Elsevier, vol. 216(C).
    5. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    6. Preininger, Michael & Stoeckl, Bernhard & Subotić, Vanja & Mittmann, Frank & Hochenauer, Christoph, 2019. "Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application," Applied Energy, Elsevier, vol. 254(C).
    7. Pérez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & McPhail, Stephen J. & Della Pietra, Massimiliano & Bosio, Barbara, 2020. "Preliminary theoretical and experimental analysis of a Molten Carbonate Fuel Cell operating in reversible mode," Applied Energy, Elsevier, vol. 263(C).
    8. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    9. Yang, Chao & Jing, Xiuhui & Miao, He & Wu, Yu & Shu, Chen & Wang, Jiatang & Zhang, Houcheng & Yu, Guojun & Yuan, Jinliang, 2020. "Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas," Energy, Elsevier, vol. 190(C).
    10. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    11. Min, Gyubin & Choi, Saeyoung & Hong, Jongsup, 2022. "A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration," Applied Energy, Elsevier, vol. 328(C).
    12. Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
    13. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    14. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    16. Königshofer, Benjamin & Boškoski, Pavle & Nusev, Gjorgji & Koroschetz, Markus & Hochfellner, Martin & Schwaiger, Marcel & Juričić, Đani & Hochenauer, Christoph & Subotić, Vanja, 2021. "Performance assessment and evaluation of SOC stacks designed for application in a reversible operated 150 kW rSOC power plant," Applied Energy, Elsevier, vol. 283(C).
    17. Li, Yongwei & Fu, Zaiguo & Li, Jingfa & Shao, Yan & Zhu, Qunzhi & Yuan, Binxia, 2024. "Effects of structural parameters of double-layer electrode on co-electrolysis in a solid oxide electrolysis cell," Energy, Elsevier, vol. 287(C).
    18. Petronilla Fragiacomo & Giuseppe De Lorenzo & Orlando Corigliano, 2018. "Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO 2 -H 2 O Feed Stream," Energies, MDPI, vol. 11(9), pages 1-17, August.
    19. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    20. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.