IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp924-934.html
   My bibliography  Save this article

Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes

Author

Listed:
  • Danilov, Nikolay
  • Lyagaeva, Julia
  • Vdovin, Gennady
  • Medvedev, Dmitry

Abstract

Reversible solid oxide cells (rSOCs) based on proton-conducting electrolytes represent a relatively new and cost-effective possibility for carrying out chemical-to-electrical energy conversion in direct and reverse directions with very high efficiency and low environmental impact. Here we report our findings regarding a modernised approach of rSOC testing, which differs from the traditional characterisation of electrochemical cells, consisting in volt-ampere measurements and impedance spectroscopy analysis under open circuit voltage (OCV) conditions. Expanding the bias range from 0.4 to 1.6 V, the designed rSOC was studied in different (fuel cell, OCV, electrolysis cell) modes and its performance was successfully correlated with ohmic and electrode electrochemical responses depending on the measurement temperature and water vapour partial pressure in oxidant gas. On the basis of this approach, the following new results can be formulated: (i) the ohmic resistance of the proton-conducting electrolytes is a variable parameter depending on the bias in contrast to the convenient oxygen-ionic conductors, for which it is assumed to be a constant; (ii) the electrolyte exhibits predominating proton transport with an activation energy of ∼0.3 eV over the whole bias range; (iii) the output parameters should be correlated with the ohmic and polarisation resistances determined at certain biases (a voltage corresponding to the maximal power density realisation or a thermoneutral voltage) instead of those measured under OCV mode. Concluding, this approach allows the main external factors affecting the rSOC’s performance to be disclosed along with proposed means for its future optimisation in the applied direction.

Suggested Citation

  • Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:924-934
    DOI: 10.1016/j.apenergy.2019.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930056X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hedayat, Nader & Du, Yanhai & Ilkhani, Hoda, 2017. "Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1221-1239.
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    3. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    4. Hossain, Shahzad & Abdalla, Abdalla M. & Jamain, Siti Noorazean Binti & Zaini, Juliana Hj & Azad, Abul K., 2017. "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 750-764.
    5. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    6. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    7. Kiho Bae & Dong Young Jang & Hyung Jong Choi & Donghwan Kim & Jongsup Hong & Byung-Kook Kim & Jong-Ho Lee & Ji-Won Son & Joon Hyung Shim, 2017. "Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    8. Gradisher, Logan & Dutcher, Bryce & Fan, Maohong, 2015. "Catalytic hydrogen production from fossil fuels via the water gas shift reaction," Applied Energy, Elsevier, vol. 139(C), pages 335-349.
    9. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    10. Choi, Sung Min & An, Hyegsoon & Yoon, Kyung Joong & Kim, Byung-Kook & Lee, Hae-Weon & Son, Ji-Won & Kim, Hyoungchul & Shin, Dongwook & Ji, Ho-Il & Lee, Jong-Ho, 2019. "Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte," Applied Energy, Elsevier, vol. 233, pages 29-36.
    11. Sihyuk Choi & Chris J. Kucharczyk & Yangang Liang & Xiaohang Zhang & Ichiro Takeuchi & Ho-Il Ji & Sossina M. Haile, 2018. "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells," Nature Energy, Nature, vol. 3(3), pages 202-210, March.
    12. Stoynov, Zdravko & Vladikova, Daria & Burdin, Blagoy & Laurencin, Jerome & Montinaro, Dario & Raikova, Gergana & Schiller, Günter & Szabo, Patric, 2018. "Differential analysis of SOFC current-voltage characteristics," Applied Energy, Elsevier, vol. 228(C), pages 1584-1590.
    13. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    2. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    3. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Choi, Sung Min & An, Hyegsoon & Yoon, Kyung Joong & Kim, Byung-Kook & Lee, Hae-Weon & Son, Ji-Won & Kim, Hyoungchul & Shin, Dongwook & Ji, Ho-Il & Lee, Jong-Ho, 2019. "Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte," Applied Energy, Elsevier, vol. 233, pages 29-36.
    5. Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
    6. Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Kim, J. & Sengodan, S. & Kim, S. & Kwon, O. & Bu, Y. & Kim, G., 2019. "Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 606-618.
    8. Rasaki, S.A. & Liu, C. & Lao, C. & Zhang, H. & Chen, Z., 2021. "The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    10. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    11. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    12. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    13. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    18. Fernandez, Helen Coarita & Buffiere, Pierre & Bayard, Rémy, 2022. "Understanding the role of mechanical pretreatment before anaerobic digestion: Lab-scale investigations," Renewable Energy, Elsevier, vol. 187(C), pages 193-203.
    19. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:924-934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.