IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219320742.html
   My bibliography  Save this article

Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas

Author

Listed:
  • Yang, Chao
  • Jing, Xiuhui
  • Miao, He
  • Wu, Yu
  • Shu, Chen
  • Wang, Jiatang
  • Zhang, Houcheng
  • Yu, Guojun
  • Yuan, Jinliang

Abstract

A two-dimensional mathematical model is developed for a single-cell based on the planar configuration and validated by relevant experimental data, with an aim to describe the coupling phenomena of the multiphysics transport processes and the meso-scale elementary reactions. It is revealed that desorption and adsorption reactions in the electrode mostly take place near the electrolyte and the channel, respectively; the distribution of the surface species depends on the gas diffusion in the porous electrode affected by the thickness and microstructure of the electrode. The electrochemical reactions are centralized in about 100 μm thick electrode from the electrolyte. Nis and COs are the major surface species in both fuel cell (FC) and electrolysis cell (EC) modes. Os is higher in the FC mode, particularly near the electrolyte due to the desorption and charge transfer reactions; The microscopic structure properties, including average porosity, tortuosity and particle size, are also influential on the elementary reactions due to the gas diffusion through the tortuous pathways and the active sites on the catalyst surfaces. It is also found that the performance predicted in the global models is often overestimated, because the limitations of the local elementary reactions are not considered in the global model.

Suggested Citation

  • Yang, Chao & Jing, Xiuhui & Miao, He & Wu, Yu & Shu, Chen & Wang, Jiatang & Zhang, Houcheng & Yu, Guojun & Yuan, Jinliang, 2020. "Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320742
    DOI: 10.1016/j.energy.2019.116379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219320742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Ottaviano, A., 2016. "Solid oxide fuel cell modelling: Electrochemical performance and thermal management during load-following operation," Energy, Elsevier, vol. 115(P1), pages 107-119.
    2. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    3. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    4. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    5. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    6. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    7. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    8. Er-rbib, Hanaâ & Bouallou, Chakib, 2014. "Modeling and simulation of CO methanation process for renewable electricity storage," Energy, Elsevier, vol. 75(C), pages 81-88.
    9. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    10. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    11. Menon, Vikram & Banerjee, Aayan & Dailly, Julian & Deutschmann, Olaf, 2015. "Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming," Applied Energy, Elsevier, vol. 149(C), pages 161-175.
    12. Hofmann, P. & Panopoulos, K.D. & Fryda, L.E. & Kakaras, E., 2009. "Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model," Energy, Elsevier, vol. 34(12), pages 2151-2157.
    13. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.
    14. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Jing, Xiuhui & Miao, He & Xu, Jingxiang & Lin, Peijian & Li, Ping & Liang, Chaoyu & Wu, Yu & Yuan, Jinliang, 2021. "The physical properties and effects of sintering conditions on rSOFC fuel electrodes evaluated by molecular dynamics simulation," Energy, Elsevier, vol. 216(C).
    2. Zhu, Pengfei & Wu, Zhen & Yang, Yuchen & Wang, Huan & Li, Ruiqing & Yang, Fusheng & Zhang, Zaoxiao, 2023. "The dynamic response of solid oxide fuel cell fueled by syngas during the operating condition variations," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    2. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    3. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    4. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi, 2017. "Numerical investigations to determine the optimal operating conditions for 1 kW-class flat-tubular solid oxide fuel cell stack," Energy, Elsevier, vol. 141(C), pages 673-691.
    5. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    6. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    7. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    8. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    9. Yang, Chao & Jing, Xiuhui & Miao, He & Xu, Jingxiang & Lin, Peijian & Li, Ping & Liang, Chaoyu & Wu, Yu & Yuan, Jinliang, 2021. "The physical properties and effects of sintering conditions on rSOFC fuel electrodes evaluated by molecular dynamics simulation," Energy, Elsevier, vol. 216(C).
    10. Nielsen, Anders S. & Peppley, Brant A. & Burheim, Odne S., 2023. "Controlling the contribution of transport mechanisms in solid oxide co-electrolysis cells to improve product selectivity and performance: A theoretical framework," Applied Energy, Elsevier, vol. 344(C).
    11. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2023. "Power maximization and load range extension of solid oxide fuel cell operation by water cooling," Energy, Elsevier, vol. 276(C).
    12. Mehran, Muhammad Taqi & Yu, Seong-Bin & Lee, Dong-Young & Hong, Jong-Eun & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun & Lim, Tak-Hyoung, 2018. "Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells," Applied Energy, Elsevier, vol. 212(C), pages 759-770.
    13. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    14. Luo, Yu & Wu, Xiao-yu & Shi, Yixiang & Ghoniem, Ahmed F. & Cai, Ningsheng, 2018. "Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage," Applied Energy, Elsevier, vol. 215(C), pages 371-383.
    15. Barelli, L. & Bidini, G. & Ottaviano, A., 2015. "Hydromethane generation through SOE (solid oxide electrolyser): Advantages of H2O–CO2 co-electrolysis," Energy, Elsevier, vol. 90(P1), pages 1180-1191.
    16. Mahmood, Asif & Bano, Saira & Yu, Ji Haeng & Lee, Kew-Ho, 2015. "High-performance solid oxide electrolysis cell based on ScSZ/GDC (scandia-stabilized zirconia/gadolinium-doped ceria) bi-layered electrolyte and LSCF (lanthanum strontium cobalt ferrite) oxygen electr," Energy, Elsevier, vol. 90(P1), pages 344-350.
    17. Luo, Yu & Shi, Yixiang & Zheng, Yi & Gang, Zhongxue & Cai, Ningsheng, 2017. "Mutual information for evaluating renewable power penetration impacts in a distributed generation system," Energy, Elsevier, vol. 141(C), pages 290-303.
    18. Zhang, Yumeng & Wang, Ningling & Tong, Xiaofeng & Duan, Liqiang & Lin, Tzu-En & Maréchal, François & Van herle, Jan & Wang, Ligang & Yang, Yongping, 2021. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Economic potential evaluated via plant capital-cost target," Applied Energy, Elsevier, vol. 290(C).
    19. Luo, Yu & Liao, Shuting & Chen, Shuai & Fang, Huihuang & Zhong, Fulan & Lin, Li & Zhou, Chen & Chen, Chongqi & Cai, Guohui & Au, Chak-Tong & Jiang, Lilong, 2022. "Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation," Applied Energy, Elsevier, vol. 307(C).
    20. Antar, Elie & Robert, Etienne, 2024. "Thermodynamic analysis of small-scale polygeneration systems producing natural gas, electricity, heat, and carbon dioxide from biomass," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.