IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp759-770.html
   My bibliography  Save this article

Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells

Author

Listed:
  • Mehran, Muhammad Taqi
  • Yu, Seong-Bin
  • Lee, Dong-Young
  • Hong, Jong-Eun
  • Lee, Seung-Bok
  • Park, Seok-Joo
  • Song, Rak-Hyun
  • Lim, Tak-Hyoung

Abstract

The conversion of CO2 and steam into syngas in a pressurized solid oxide coelectrolysis (SOC) cell is considered one of the most promising pathways towards the production of sustainable fuels. In this study, a high pressure tubular SOC system was designed and developed that can efficiently convert a mixture of steam and CO2 into valuable syngas fuel. Tubular SOC cells based on a Ni-yttria stabilized zirconia (Ni-YSZ) fuel electrode, scandia stabilized zirconia (ScSZ) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Ce0.8Gd0.2O1.9−δ (GDC) composite air electrode were fabricated and tested at various high pressure conditions to determine the electrochemical and syngas production characteristics. The pressurized tubular SOC cell was first operated at the ambient pressure for various inlet gas conditions and the electrochemical performance of the tubular SOC was studied by current-voltage curves combined with electrochemical impedance spectroscopy at different H2O and CO2 mole% in the inlet gas. The pressurized SOC cell was then operated between 1 and 8 bar pressure at 800 °C in both fuel cell and coelectrolysis modes. In the fuel cell mode, the SOC showed a 44.2% increase in the maximum power density to with a pressure increase of 1–8 bar. The increase in the performance of the cell in the fuel cell mode was attributed to the higher open circuit voltage (OCV) and reduced polarization resistance of the electrodes at higher pressures. In the coelectrolysis mode, the pressure dependency of the electrochemical characteristics on the tubular SOC cell was studied and the relation between different parameters of the system and the pressure conditions was derived. It was found that the higher open circuit voltage (OCV) and the reduced polarization resistance resulted in a significant improvement in the performance of the pressurized tubular SOC cell for the production of syngas. A post-test material characterization by electron microscopy did not show any significant degradation in the tubular SOC cell microstructure during the high pressure operation at 8 bar.

Suggested Citation

  • Mehran, Muhammad Taqi & Yu, Seong-Bin & Lee, Dong-Young & Hong, Jong-Eun & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun & Lim, Tak-Hyoung, 2018. "Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells," Applied Energy, Elsevier, vol. 212(C), pages 759-770.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:759-770
    DOI: 10.1016/j.apenergy.2017.12.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917317932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes," Energy, Elsevier, vol. 81(C), pages 682-690.
    2. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    3. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
    4. Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.
    5. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    6. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    7. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
    8. Mehran, Muhammad Taqi & Lim, Tak-Hyoung & Lee, Seung-Bok & Lee, Jong-Won & Park, Seok-Ju & Song, Rak-Hyun, 2016. "Long-term performance degradation study of solid oxide carbon fuel cells integrated with a steam gasifier," Energy, Elsevier, vol. 113(C), pages 1051-1061.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    2. Yan Shao & Yongwei Li & Zaiguo Fu & Jingfa Li & Qunzhi Zhu, 2023. "Numerical Investigation on the Performance of IT-SOEC with Double-Layer Composite Electrode," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Lu, Lianmei & Liu, Wu & Wang, Jianxin & Wang, Yudong & Xia, Changrong & Zhou, Xiao-Dong & Chen, Ming & Guan, Wanbing, 2020. "Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes," Applied Energy, Elsevier, vol. 259(C).
    4. Perez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & Della Pietra, Massimiliano & McPhail, Stephen J., 2018. "A numerical and experimental comparison of a single reversible molten carbonate cell operating in fuel cell mode and electrolysis mode," Applied Energy, Elsevier, vol. 226(C), pages 1037-1055.
    5. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    6. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    7. Maria Alessandra Ancona & Vincenzo Antonucci & Lisa Branchini & Francesco Catena & Andrea De Pascale & Alessandra Di Blasi & Marco Ferraro & Cristina Italiano & Francesco Melino & Antonio Vita, 2022. "Parametric Thermo-Economic Analysis of a Power-to-Gas Energy System with Renewable Input, High Temperature Co-Electrolysis and Methanation," Energies, MDPI, vol. 15(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    2. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
    3. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    4. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    5. Mahrokh Samavati & Andrew Martin & Massimo Santarelli & Vera Nemanova, 2018. "Synthetic Diesel Production as a Form of Renewable Energy Storage," Energies, MDPI, vol. 11(5), pages 1-21, May.
    6. Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A thermodynamic assessment," Energy, Elsevier, vol. 82(C), pages 714-721.
    7. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    8. Herz, Gregor & Rix, Christopher & Jacobasch, Eric & Müller, Nils & Reichelt, Erik & Jahn, Matthias & Michaelis, Alexander, 2021. "Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions," Applied Energy, Elsevier, vol. 292(C).
    9. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
    10. Albrecht, Friedemann Georg & Nguyen, Tuong-Van, 2020. "Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis," Energy, Elsevier, vol. 192(C).
    11. König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
    12. Samavati, Mahrokh & Santarelli, Massimo & Martin, Andrew & Nemanova, Vera, 2017. "Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production," Energy, Elsevier, vol. 122(C), pages 37-49.
    13. Qi, Huiying & Zhang, Junfeng & Tu, Baofeng & Yin, Yanxia & Zhang, Tonghuan & Liu, Di & Zhang, Fujun & Su, Xin & Cui, Daan & Cheng, Mojie, 2022. "Extreme management strategy and thermodynamic analysis of high temperature H2O/CO2 co-electrolysis for energy conversion," Renewable Energy, Elsevier, vol. 183(C), pages 229-241.
    14. Paolo Di Giorgio & Umberto Desideri, 2016. "Potential of Reversible Solid Oxide Cells as Electricity Storage System," Energies, MDPI, vol. 9(8), pages 1-14, August.
    15. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    16. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    17. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    18. Zhang, Yongliang & Han, Minfang, 2019. "Energy storage and syngas production by switching cathode gas in nickel-yttria stabilized zirconia supported solid oxide cell," Applied Energy, Elsevier, vol. 241(C), pages 1-10.
    19. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    20. Marchese, Marco & Chesta, Simone & Santarelli, Massimo & Lanzini, Andrea, 2021. "Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:759-770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.