IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p685-d489092.html
   My bibliography  Save this article

Management of Energy Sources and the Development Potential in the Energy Production Sector—A Comparison of EU Countries

Author

Listed:
  • Marta Daroń

    (Faculty of Management, Czestochowa University of Technology, 42-201 Częstochowa, Poland)

  • Marlena Wilk

    (Centre of Foreign Languages, Czestochowa University of Technology, 42-201 Częstochowa, Poland)

Abstract

Appropriate management of energy sources is one of the basic undertakings in the energy sector. Climate policy changes and the development of technologies enabling the acquisition of energy in a way to reduce the negative impact on the natural environment lead to diversity in the structure of the energy sources being used. Therefore, it is important to assess the impact of these changes on the development of energy sectors by particular countries. The article contains the analysis of various energy sources utilization by European Union (EU) countries and the assessment of the energy production sector potential, and the development of this potential in relation to changes in the energy sources structure. For this purpose, a multidimensional comparative analysis was used. The data for the analysis are derived from the Eurostat database for the years 2017 and 2019 for 28 EU countries and they concern the use of energy sources such as combustible fuels, coal and manufactured gases, natural gas, oil and petroleum products (excluding biofuel portion), hydro/hydropower, wind power, solar photovoltaic, nuclear fuels and other fuels n.e.c. As a result of the research, it was proved that in most EU countries the changes introduced in the structure of the use of various energy sources, according to EU climate policy, have a positive impact on the development of particular energy sectors.

Suggested Citation

  • Marta Daroń & Marlena Wilk, 2021. "Management of Energy Sources and the Development Potential in the Energy Production Sector—A Comparison of EU Countries," Energies, MDPI, vol. 14(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:685-:d:489092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    3. Khalid Mehmood & Yaser Iftikhar & Shouming Chen & Shaheera Amin & Alia Manzoor & Jinlong Pan, 2020. "Analysis of Inter-Temporal Change in the Energy and CO 2 Emissions Efficiency of Economies: A Two Divisional Network DEA Approach," Energies, MDPI, vol. 13(13), pages 1-17, June.
    4. Mondal, Md. Alam Hossain & Denich, Manfred, 2010. "Assessment of renewable energy resources potential for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2401-2413, October.
    5. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    6. Erdem, Z. Bengü, 2010. "The contribution of renewable resources in meeting Turkey's energy-related challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2710-2722, December.
    7. Sahir, Mukhtar H. & Qureshi, Arshad H., 2008. "Assessment of new and renewable energy resources potential and identification of barriers to their significant utilization in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 290-298, January.
    8. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    9. Ren, Jingzheng & Sovacool, Benjamin K., 2014. "Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics," Energy, Elsevier, vol. 76(C), pages 838-849.
    10. Krewitt, Wolfram, 2002. "External costs of energy--do the answers match the questions?: Looking back at 10 years of ExternE," Energy Policy, Elsevier, vol. 30(10), pages 839-848, August.
    11. Nong, Duy & Wang, Can & Al-Amin, Abul Quasem, 2020. "A critical review of energy resources, policies and scientific studies towards a cleaner and more sustainable economy in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Małgorzata Trojanowska & Krzysztof Nęcka, 2020. "Selection of the Multiple-Criiater Decision-Making Method for Evaluation of Sustainable Energy Development: A Case Study of Poland," Energies, MDPI, vol. 13(23), pages 1-24, November.
    13. Ur Rahman, Zia & Iqbal Khattak, Shoukat & Ahmad, Manzoor & Khan, Anwar, 2020. "A disaggregated-level analysis of the relationship among energy production, energy consumption and economic growth: Evidence from China," Energy, Elsevier, vol. 194(C).
    14. Parikh, Jyoti K., 1979. "Renewable energy options: What could developing countries expect from them?," Energy, Elsevier, vol. 4(5), pages 989-994.
    15. Al-Mohamad, Ali, 2001. "Renewable energy resources in Syria," Renewable Energy, Elsevier, vol. 24(3), pages 365-371.
    16. Georgakellos, Dimitrios A., 2010. "Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector," Energy Economics, Elsevier, vol. 32(1), pages 202-209, January.
    17. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Larissa M. Batrancea & Horia Tulai, 2022. "Thriving or Surviving in the Energy Industry: Lessons on Energy Production from the European Economies," Energies, MDPI, vol. 15(22), pages 1-16, November.
    3. Karolina Talarek & Anna Knitter-Piątkowska & Tomasz Garbowski, 2022. "Wind Parks in Poland—New Challenges and Perspectives," Energies, MDPI, vol. 15(19), pages 1-25, September.
    4. Roxana Voicu-Dorobanțu & Clara Volintiru & Maria-Floriana Popescu & Vlad Nerău & George Ștefan, 2021. "Tackling Complexity of the Just Transition in the EU: Evidence from Romania," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    6. Ortega, Margarita & del Río, Pablo & Montero, Eduardo A., 2013. "Assessing the benefits and costs of renewable electricity. The Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 294-304.
    7. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.
    8. Papagiannis, A. & Roussos, D. & Menegaki, M. & Damigos, D., 2014. "Externalities from lignite mining-related dust emissions," Energy Policy, Elsevier, vol. 74(C), pages 414-424.
    9. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    11. Elizaveta Gavrikova & Yegor Burda & Vladimir Gavrikov & Ruslan Sharafutdinov & Irina Volkova & Marina Rubleva & Daria Polosukhina, 2019. "Clean Energy Sources: Insights from Russia," Resources, MDPI, vol. 8(2), pages 1-25, May.
    12. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    13. Dulal, Hari Bansha & Shah, Kalim U. & Sapkota, Chandan & Uma, Gengaiah & Kandel, Bibek R., 2013. "Renewable energy diffusion in Asia: Can it happen without government support?," Energy Policy, Elsevier, vol. 59(C), pages 301-311.
    14. Keiner, Dominik & Thoma, Christian & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?," Applied Energy, Elsevier, vol. 340(C).
    15. Çapik, Mehmet & Yılmaz, Ali Osman & Çavuşoğlu, İbrahim, 2012. "Present situation and potential role of renewable energy in Turkey," Renewable Energy, Elsevier, vol. 46(C), pages 1-13.
    16. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    17. Hof, A.F. & Esmeijer, K. & de Boer, H.S. & Daioglou, V. & Doelman, J.C. & Elzen, M.G.J. den & Gernaat, D.E.H.J. & van Vuuren, D.P., 2022. "Regional energy diversity and sovereignty in different 2 °C and 1.5 °C pathways," Energy, Elsevier, vol. 239(PB).
    18. Mahapatra, Diptiranjan & Shukla, Priyadarshi & Dhar, Subash, 2012. "External cost of coal based electricity generation: A tale of Ahmedabad city," Energy Policy, Elsevier, vol. 49(C), pages 253-265.
    19. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    20. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.

    More about this item

    Keywords

    energy sources; EU; management; RES;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:685-:d:489092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.