IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7004-d923735.html
   My bibliography  Save this article

Wind Parks in Poland—New Challenges and Perspectives

Author

Listed:
  • Karolina Talarek

    (Eurowind Energy Sp. z o. o., Innowatorów 8, 62-070 Dopiewo, Poland)

  • Anna Knitter-Piątkowska

    (Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland)

  • Tomasz Garbowski

    (Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland)

Abstract

The wind farm market in Poland evolved very dynamically in the years 2000–2015. Unfortunately, the high public resistance caused the government in 2016 to freeze the development of this industry by introducing a restrictive act, which practically stopped the wind farm industry overnight. The climate aspects, such as reduction of the carbon footprint, which have been considered and widely discussed for several years at the European Union forums, were a chance to change this situation. The new regulations gave hope that the wind energy industry in Poland would soon be unblocked, unfortunately the commitment to coal was still an effective barrier, which is clearly visible in the presented study. The Russian aggression against Ukraine, which resulted in a blockade of hydrocarbon imports, has completely changed the center of gravity of the Polish energy and heating economy. The article focuses on the accelerated changes in the renewable energy sources (RESs) and the related legislation, especially emphasizing the prospect of building offshore wind farms. The huge European energy crisis means that new solutions, both legislative and technological, which will allow to quickly switch to green energy, must appear in Poland immediately. The direct conversion of green energy from RES farms into thermal energy in the planned investment in heat energy plants is discussed. This article also presents a broad view of new opportunities as well as the challenges and prospects that have recently arisen in the wind energy industry in Poland.

Suggested Citation

  • Karolina Talarek & Anna Knitter-Piątkowska & Tomasz Garbowski, 2022. "Wind Parks in Poland—New Challenges and Perspectives," Energies, MDPI, vol. 15(19), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7004-:d:923735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    2. Anna Dóra Sæþórsdóttir & Margrét Wendt & Edita Tverijonaite, 2021. "Wealth of Wind and Visitors: Tourist Industry Attitudes towards Wind Energy Development in Iceland," Land, MDPI, vol. 10(7), pages 1-19, June.
    3. Righter, Robert W., 1996. "Pioneering in wind energy: The California experience," Renewable Energy, Elsevier, vol. 9(1), pages 781-784.
    4. Francisco Haces-Fernandez & Mariee Cruz-Mendoza & Hua Li, 2022. "Onshore Wind Farm Development: Technologies and Layouts," Energies, MDPI, vol. 15(7), pages 1-25, March.
    5. Piotr Senkus & Waldemar Glabiszewski & Aneta Wysokińska-Senkus & Szymon Cyfert & Roman Batko, 2021. "The Potential of Ecological Distributed Energy Generation Systems, Situation, and Perspective for Poland," Energies, MDPI, vol. 14(23), pages 1-26, November.
    6. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    7. Fleming, P. D. & Probert, S. D., 1984. "The evolution of wind-turbines: An historical review," Applied Energy, Elsevier, vol. 18(3), pages 163-177.
    8. Ackermann, Thomas & Söder, Lennart, 2002. "An overview of wind energy-status 2002," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 67-127.
    9. Marta Daroń & Marlena Wilk, 2021. "Management of Energy Sources and the Development Potential in the Energy Production Sector—A Comparison of EU Countries," Energies, MDPI, vol. 14(3), pages 1-12, January.
    10. Joanna Wyrobek & Łukasz Popławski & Maria Dzikuć, 2021. "Analysis of Financial Problems of Wind Farms in Poland," Energies, MDPI, vol. 14(5), pages 1-28, February.
    11. Gipe, Paul, 1991. "Wind energy comes of age California and Denmark," Energy Policy, Elsevier, vol. 19(8), pages 756-767, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas de Landa Couto & Nícolas Estanislau Moreira & Josué Yoshikazu de Oliveira Saito & Patricia Habib Hallak & Afonso Celso de Castro Lemonge, 2023. "Multi-Objective Structural Optimization of a Composite Wind Turbine Blade Considering Natural Frequencies of Vibration and Global Stability," Energies, MDPI, vol. 16(8), pages 1-25, April.
    2. Zbigniew W. Kundzewicz & Janusz Olejnik & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Storing Carbon in Forest Biomass and Wood Products in Poland—Energy and Climate Perspective," Energies, MDPI, vol. 16(15), pages 1-18, August.
    3. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    2. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.
    3. Christopher Dent, 2013. "Wind energy development in East Asia and Europe," Asia Europe Journal, Springer, vol. 11(3), pages 211-230, September.
    4. Roxana Voicu-Dorobanțu & Clara Volintiru & Maria-Floriana Popescu & Vlad Nerău & George Ștefan, 2021. "Tackling Complexity of the Just Transition in the EU: Evidence from Romania," Energies, MDPI, vol. 14(5), pages 1-22, March.
    5. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    6. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    7. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.
    8. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.
    9. Larissa M. Batrancea & Horia Tulai, 2022. "Thriving or Surviving in the Energy Industry: Lessons on Energy Production from the European Economies," Energies, MDPI, vol. 15(22), pages 1-16, November.
    10. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    11. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    12. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    13. Izabela Horzela & Sławomir Gromadzki & Jarosław Gryz & Tomasz Kownacki & Aneta Nowakowska-Krystman & Marzena Piotrowska-Trybull & Radosław Wisniewski, 2021. "Energy Portfolio of the Eastern Poland Macroregion in the European Union," Energies, MDPI, vol. 14(24), pages 1-28, December.
    14. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    15. Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Yang, Hua, 2017. "Verification of a novel innovative blade root design for wind turbines using a hybrid numerical method," Energy, Elsevier, vol. 141(C), pages 1661-1670.
    16. Valentine, Scott Victor, 2010. "Canada's constitutional separation of (wind) power," Energy Policy, Elsevier, vol. 38(4), pages 1918-1930, April.
    17. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    18. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    19. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7004-:d:923735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.