IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7457-d674891.html
   My bibliography  Save this article

Utilization of Renewable Energy Sources in Road Transport in EU Countries—TOPSIS Results

Author

Listed:
  • Joanna Kisielińska

    (Management Institute, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Monika Roman

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Piotr Pietrzak

    (Management Institute, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Michał Roman

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Katarzyna Łukasiewicz

    (Management Institute, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Elżbieta Kacperska

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

Abstract

The primary aim of this study was to assess and compare EU countries in terms of the use of renewable energy sources in road transport. The following research tasks were undertaken to realize this aim: (1) a review of the literature concerning the negative externalities in road transport, the concept of sustainable development, and legal regulations referring to the utilization of renewable energy sources; (2) presentation of changes in energy consumption (both traditional and renewable) in road transport in EU countries in the years 2008–2019; and (3) identification of leaders among the EU countries in terms of consumption of renewable energy sources in road transport. The aim and tasks were realized using the literature review and TOPSIS method as well as descriptive, tabular, and graphic methods. The analysis was conducted for 28 EU countries according to the status for 2019. The period of 2008–2019 was investigated. Sources of materials included literature on the subject and Eurostat data. Although renewable energy sources accounted for as little as 6% of total energy consumption in road transport in EU countries in 2019, this is a significant topical issue. It results from the direction in which changes need to be implemented in terms of energy generation in this area of human activity. It turned out that blended biodiesel and blended biogasoline were the most commonly used fuels originating from renewable sources. The application of the TOPSIS method resulted in the identification of five groups of EU member countries, which differed in terms of the degree of utilization of renewable energy sources in road transport. Luxemburg, Sweden, and Austria were leaders in this respect. In turn, Malta, Estonia, and Croatia were characterized by very low consumption of renewable energy. The greatest progress in the utilization of renewable energy sources in road transport was recorded in Sweden, Finland, and Bulgaria (changes in the relative closeness to the ideal solution from 0.15 to 0.27), while the greatest reduction in relation to other countries was observed in Austria, Germany, and Lithuania (changes from −0.35 to −0.22).

Suggested Citation

  • Joanna Kisielińska & Monika Roman & Piotr Pietrzak & Michał Roman & Katarzyna Łukasiewicz & Elżbieta Kacperska, 2021. "Utilization of Renewable Energy Sources in Road Transport in EU Countries—TOPSIS Results," Energies, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7457-:d:674891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kathleen Meisel & Markus Millinger & Karin Naumann & Franziska Müller-Langer & Stefan Majer & Daniela Thrän, 2020. "Future Renewable Fuel Mixes in Transport in Germany under RED II and Climate Protection Targets," Energies, MDPI, vol. 13(7), pages 1-18, April.
    2. Cravioto, Jordi & Yamasue, Eiji & Okumura, Hideyuki & Ishihara, Keiichi N., 2013. "Road transport externalities in Mexico: Estimates and international comparisons," Transport Policy, Elsevier, vol. 30(C), pages 63-76.
    3. Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    4. Rizzi, Luis Ignacio & De La Maza, Cristobal, 2017. "The external costs of private versus public road transport in the Metropolitan Area of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 123-140.
    5. Carl Death, 2015. "Four discourses of the green economy in the global South," Third World Quarterly, Taylor & Francis Journals, vol. 36(12), pages 2207-2224, December.
    6. Magdalena Kogut-Jaworska & Elżbieta Ociepa-Kicińska, 2020. "Smart Specialisation as a Strategy for Implementing the Regional Innovation Development Policy—Poland Case Study," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    7. Tobias Haas & Hendrik Sander, 2020. "Decarbonizing Transport in the European Union: Emission Performance Standards and the Perspectives for a European Green Deal," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    8. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    9. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    10. Renata Marks-Bielska & Stanisław Bielski & Katarzyna Pik & Krystyna Kurowska, 2020. "The Importance of Renewable Energy Sources in Poland’s Energy Mix," Energies, MDPI, vol. 13(18), pages 1-23, September.
    11. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    12. Odeck, James, 2004. "Cost overruns in road construction--what are their sizes and determinants?," Transport Policy, Elsevier, vol. 11(1), pages 43-53, January.
    13. Euchi, Jalel & Kallel, Ahmed, 2021. "Internalization of external congestion and CO2emissions costs related to road transport: The case of Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    14. von Hippel, David & Suzuki, Tatsujiro & Williams, James H. & Savage, Timothy & Hayes, Peter, 2011. "Energy security and sustainability in Northeast Asia," Energy Policy, Elsevier, vol. 39(11), pages 6719-6730.
    15. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    16. Thomas Hagedorn & Gernot Sieg, 2019. "Emissions and External Environmental Costs from the Perspective of Differing Travel Purposes," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    17. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    18. Aldenius, Malin, 2018. "Influence of public bus transport organisation on the introduction of renewable fuel," Research in Transportation Economics, Elsevier, vol. 69(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Oum, Tae Hoon & Wang, Kun, 2020. "Socially optimal lockdown and travel restrictions for fighting communicable virus including COVID-19," Transport Policy, Elsevier, vol. 96(C), pages 94-100.
    3. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    4. Thomas Hagedorn & Jan Wessel, 2022. "How Information on Emissions per Euro Spent can Influence Leisure Travel Decisions," Working Papers 35, Institute of Transport Economics, University of Muenster.
    5. Wiktor Hebda, 2021. "The North-South Gas Corridor in the Context of Poland’s Gas Transmission System—A Perfect Opportunity to Diversify Gas Resources," Energies, MDPI, vol. 14(21), pages 1-21, November.
    6. Haller Alina-Petronela & Hârşan Georgia-Daniela Tacu, 2021. "Causes of Sustainable Tourism Resilience in Central and Eastern Europe. The Case of Three Countries: Romania, Bulgaria and Poland," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 1251-1268, December.
    7. Wiktoria Sobczyk & Eugeniusz Jacek Sobczyk, 2021. "Varying the Energy Mix in the EU-28 and in Poland as a Step towards Sustainable Development," Energies, MDPI, vol. 14(5), pages 1-19, March.
    8. Ewa Chomać-Pierzecka & Anna Sobczak & Edward Urbańczyk, 2022. "RES Market Development and Public Awareness of the Economic and Environmental Dimension of the Energy Transformation in Poland and Lithuania," Energies, MDPI, vol. 15(15), pages 1-18, July.
    9. Katarzyna Łukasiewicz & Piotr Pietrzak & Jakub Kraciuk & Elżbieta Kacperska & Małgorzata Cieciora, 2022. "Sustainable Energy Development—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-18, November.
    10. Swärdh, Jan-Erik & Genell, Anders, 2020. "Marginal costs of road noise: Estimation, differentiation and policy implications," Transport Policy, Elsevier, vol. 88(C), pages 24-32.
    11. Jarosław Kaczmarek & Konrad Kolegowicz & Wojciech Szymla, 2022. "Restructuring of the Coal Mining Industry and the Challenges of Energy Transition in Poland (1990–2020)," Energies, MDPI, vol. 15(10), pages 1-48, May.
    12. Jarosław Solarz & Małgorzata Gawlik-Kobylińska & Witold Ostant & Paweł Maciejewski, 2022. "Trends in Energy Security Education with a Focus on Renewable and Nonrenewable Sources," Energies, MDPI, vol. 15(4), pages 1, February.
    13. Jakub Kraciuk & Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2022. "Innovative Energy Technologies in Road Transport in Selected EU Countries," Energies, MDPI, vol. 15(16), pages 1-18, August.
    14. Ewa Brągoszewska & Maja Pawlak, 2021. "Health Risks Associated with Occupational Exposure to Biological Air Pollutants Occurring during the Processing of Biomass for Energy Purposes: A Case Study," Energies, MDPI, vol. 14(8), pages 1-10, April.
    15. Vitor Joao Pereira Domingues MARTINHO, 2023. "Energy Crops: Assessments In The European Union Agricultural Regions Through Machine Learning Approaches," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 29-42, June.
    16. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana & Magdalena Tutak & Jarosław Brodny, 2021. "Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector," Energies, MDPI, vol. 14(9), pages 1-30, April.
    17. Jan Kunkler & Maximilian Braun & Florian Kellner, 2021. "Speed Limit Induced CO 2 Reduction on Motorways: Enhancing Discussion Transparency through Data Enrichment of Road Networks," Sustainability, MDPI, vol. 13(1), pages 1-22, January.
    18. Qiucheng Li & Jiang Hu & Bolin Yu, 2021. "Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China," Energies, MDPI, vol. 14(13), pages 1-17, June.
    19. Chantal C. Cantarelli & Bert van Wee & Eric J. E. Molin & Bent Flyvbjerg, 2013. "Different Cost Performance: Different Determinants? The Case of Cost Overruns in Dutch Transportation Infrastructure Projects," Papers 1307.2179, arXiv.org, revised Jan 2015.
    20. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7457-:d:674891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.