IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5680-d632355.html
   My bibliography  Save this article

Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis

Author

Listed:
  • Elżbieta Kacperska

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Katarzyna Łukasiewicz

    (Management Institute, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Piotr Pietrzak

    (Management Institute, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

Abstract

Increasing the use of renewable energy sources is one of the strategic objectives of the European Union. In this regard, it seems necessary to answer the question: which of the member countries are the most effective in its implementation? Therefore, the main goal was to distinguish groups of European Union countries, including the Visegrad Group, differing in the use of renewable energy sources in transport, electricity, heating and cooling (based on cluster analysis). All members of the EU were determinedly selected for research on 1 February 2020 (27 countries). The research period embraced the years 2009–2019. The sources of materials were the literature on the topic and data from Eurostat. Descriptive, tabular, graphical methods and cluster analysis were used in the presentation and analysis of materials. In 2019 wind and hydro power accounted for two-thirds of the total electricity generated from renewable sources. In 2019, renewable energy sources made up 34% of gross electricity consumption in the EU-27. Wind and hydro power accounted for two-thirds of the total electricity generated from renewable sources (35% each). Moreover, it was determined that there were 5 clusters that differed in their use of renewable energy sources. The highest average renewable energy consumption in transport, heating and cooling in 2019 was characterized by a cluster consisting of Sweden and Finland. In contrast, the highest average renewable energy consumption in electricity was characterized by a cluster consisting of countries such as: Austria, Croatia, Denmark, Latvia and Portugal. Finally, in a group that included countries such as Belgium, France, Luxembourg, Malta, the Netherlands and the entire VG (Hungary, Czechia, Slovakia and Poland), renewable energy consumption rates (in transport, electricity, heating and cooling) were lower than the EU average (27 countries).

Suggested Citation

  • Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5680-:d:632355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marko Sarstedt & Erik Mooi, 2014. "The Market Research Process," Springer Texts in Business and Economics, in: A Concise Guide to Market Research, edition 2, chapter 2, pages 11-23, Springer.
    2. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis, 2018. "Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    3. Robert Fischer & Erik Elfgren & Andrea Toffolo, 2018. "Energy Supply Potentials in the Northern Counties of Finland, Norway and Sweden towards Sustainable Nordic Electricity and Heating Sectors: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    4. Vincenzo Dovì & Antonella Battaglini, 2015. "Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 8(12), pages 1-8, November.
    5. Bogdan Włodarczyk & Daniela Firoiu & George H. Ionescu & Florin Ghiocel & Marek Szturo & Lesław Markowski, 2021. "Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries," Energies, MDPI, vol. 14(8), pages 1-16, April.
    6. Kamlesh Kumar, 2020. "Social, Economic, and Environmental Impacts of Renewable Energy Resources," Chapters, in: Kenneth Eloghene Okedu & Ahmed Tahour & Abdel Ghani Aissaoui (ed.), Wind Solar Hybrid Renewable Energy System, IntechOpen.
    7. Zahedi, A., 2011. "A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4775-4779.
    8. Kornél Németh & Zoltán Birkner & Andrea Katona & Nikoletta Göllény-Kovács & Attila Bai & Péter Balogh & Zoltán Gabnai & Erzsébet Péter, 2020. "Can Energy Be a “Local Product” Again? Hungarian Case Study," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    9. Weitzel, Timm & Glock, C. H., 2018. "Energy Management for Stationary Electric Energy Storage Systems: A Systematic Literature Review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88880, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    11. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2018. "Assessment of energy policies to promote photovoltaic generation in the European Union," Energy, Elsevier, vol. 151(C), pages 864-874.
    12. Ewelina Kochanek, 2021. "The Energy Transition in the Visegrad Group Countries," Energies, MDPI, vol. 14(8), pages 1-13, April.
    13. Silviu Nate & Yuriy Bilan & Danylo Cherevatskyi & Ganna Kharlamova & Oleksandr Lyakh & Agnieszka Wosiak, 2021. "The Impact of Energy Consumption on the Three Pillars of Sustainable Development," Energies, MDPI, vol. 14(5), pages 1-20, March.
    14. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    15. Daniel Gabaldón-Estevan & Elisa Peñalvo-López & David Alfonso Solar, 2018. "The Spanish Turn against Renewable Energy Development," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    16. Bernard Knutel & Anna Pierzyńska & Marcin Dębowski & Przemysław Bukowski & Arkadiusz Dyjakon, 2020. "Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen," Energies, MDPI, vol. 13(15), pages 1-16, August.
    17. Raymond Cattell, 1944. "A note on correlation clusters and cluster search methods," Psychometrika, Springer;The Psychometric Society, vol. 9(3), pages 169-184, September.
    18. Schlör, Holger & Fischer, Wolfgang & Hake, Jürgen-Friedrich, 2013. "Methods of measuring sustainable development of the German energy sector," Applied Energy, Elsevier, vol. 101(C), pages 172-181.
    19. Serhiy Lyeonov & Tetyana Pimonenko & Yuriy Bilan & Dalia Štreimikienė & Grzegorz Mentel, 2019. "Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy," Energies, MDPI, vol. 12(20), pages 1-12, October.
    20. Alexander Titov & György Kövér & Katalin Tóth & Géza Gelencsér & Bernadett Horváthné Kovács, 2021. "Acceptance and Potential of Renewable Energy Sources Based on Biomass in Rural Areas of Hungary," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    21. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2021. "Sustainable energy development: History of the concept and emerging themes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    22. Tomasz Rokicki & Aleksandra Perkowska, 2020. "Changes in Energy Supplies in the Countries of the Visegrad Group," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    23. Mayis G. Gulaliyev & Elchin R. Mustafayev & Gulsura Y. Mehdiyeva, 2020. "Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case," Sustainability, MDPI, vol. 12(3), pages 1-11, February.
    24. Marko Sarstedt & Erik Mooi, 2014. "A Concise Guide to Market Research," Springer Texts in Business and Economics, Springer, edition 2, number 978-3-642-53965-7, August.
    25. XU Jianzhong & Albina Assenova & Vasilii Erokhin, 2018. "Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Wałachowska & Aranka Ignasiak-Szulc, 2021. "Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations," Energies, MDPI, vol. 14(23), pages 1-17, November.
    2. Robert Huterski & Agnieszka Huterska & Ewa Zdunek-Rosa & Grażyna Voss, 2021. "Evaluation of the Level of Electricity Generation from Renewable Energy Sources in European Union Countries," Energies, MDPI, vol. 14(23), pages 1-18, December.
    3. Jakub Kraciuk & Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2022. "Innovative Energy Technologies in Road Transport in Selected EU Countries," Energies, MDPI, vol. 15(16), pages 1-18, August.
    4. Anna Marciniuk-Kluska & Mariusz Kluska, 2023. "Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy," Energies, MDPI, vol. 16(6), pages 1-15, March.
    5. Marian Woźniak & Aleksandra Badora & Krzysztof Kud, 2023. "Expectations of the Inhabitants of South-Eastern Poland Regarding the Energy Market, in the Context of the COVID-19 Crisis," Energies, MDPI, vol. 16(14), pages 1-25, July.
    6. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2023. "The Environmental Impact of Changes in the Structure of Electricity Sources in Europe," Energies, MDPI, vol. 16(1), pages 1-22, January.
    7. Joanna Kisielińska & Monika Roman & Piotr Pietrzak & Michał Roman & Katarzyna Łukasiewicz & Elżbieta Kacperska, 2021. "Utilization of Renewable Energy Sources in Road Transport in EU Countries—TOPSIS Results," Energies, MDPI, vol. 14(22), pages 1-18, November.
    8. Zhimin Luo & Jinlong Ma & Zhiqiang Jiang, 2022. "Research on Power System Dispatching Operation under High Proportion of Wind Power Consumption," Energies, MDPI, vol. 15(18), pages 1-17, September.
    9. Suman Gupta, 2023. "Nudging International Sustainable Practices Confirmed with Renewable Energy Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 494-503, November.
    10. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    11. Charlotte Jarosch & Philipp Jahnke & Johannes Giehl & Jana Himmel, 2022. "Modelling Decentralized Hydrogen Systems: Lessons Learned and Challenges from German Regions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    12. Stancu Stelian & Pernici Andreea, 2023. "Assessing the Evolution of the Energy Mix Worldwide, with a Focus on the Renewable Energy Transition," Management & Marketing, Sciendo, vol. 18(s1), pages 384-397, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    2. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    3. Saez, R. & Boer, D. & Shobo, A.B. & Vallès, M., 2023. "Techno-economic analysis of residential rooftop photovoltaics in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    5. William Philip Wall & Bilal Khalid & Mariusz Urbański & Michal Kot, 2021. "Factors Influencing Consumer’s Adoption of Renewable Energy," Energies, MDPI, vol. 14(17), pages 1-19, August.
    6. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2022. "Indicators for sustainable energy development: An Icelandic case study," Energy Policy, Elsevier, vol. 164(C).
    7. Meldrick Arjay A. Magsino & Reynold S. Beredo & Arex A. Anza, 2014. "The Motivational Effects of LPU Awards of Excellence: Basis for Improvement," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 4(12), pages 371-397, December.
    8. Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
    9. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    10. Marc Dressler & Ivan Paunovic, 2021. "Not All Wine Businesses Are the Same: Examining the Impact of Winery Business Model Extensions on the Size of Its Core Business," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    11. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    12. Laura-Gabriela CONSTANTIN, 2014. "Catastrophe Bonds. From Structure to Strategy – A Cluster Analysis at European Level," Economia. Seria Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 17(2), pages 304-317, December.
    13. Schlägel, Christopher & Sarstedt, Marko, 2016. "Assessing the measurement invariance of the four-dimensional cultural intelligence scale across countries: A composite model approach," European Management Journal, Elsevier, vol. 34(6), pages 633-649.
    14. Tae Kyung Yoon & SoEun Ahn, 2020. "Clustering Koreans’ Environmental Awareness and Attitudes into Seven Groups: Environmentalists, Dissatisfieds, Inactivators, Bystanders, Honeybees, Optimists, and Moderates," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    15. Cheng, John W. & Mitomo, Hitoshi, 2016. "Effects of ICT and media information on collective resilience after disasters – from a virtual crowd to a psychological crowd – Part 1 - ICT and media information and collective resilience in an emerg," 27th European Regional ITS Conference, Cambridge (UK) 2016 148663, International Telecommunications Society (ITS).
    16. Ali, Fazilatulaili & Dissanayake, Dilum & Bell, Margaret & Farrow, Malcolm, 2018. "Investigating car users' attitudes to climate change using multiple correspondence analysis," Journal of Transport Geography, Elsevier, vol. 72(C), pages 237-247.
    17. Yelena Popova & Sergejs Popovs, 2022. "Impact of Smart Economy on Smart Areas and Mediation Effect of National Economy," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    18. Muhammad A. Saleem & Hina Ismail & Rao Akmal Ali, 2021. "Actions Speak Louder than Words: Investigating the Interplay between Descriptive and Injunctive Norms to Promote Alternative Fuel Vehicles," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    19. Todorović Jadranka Đurović & Đorđević Marina & Krstić Marko, 2020. "The Impact of Corporate Income Tax on Gross Domestic Product - The Case of the Republic of Serbia," Economic Themes, Sciendo, vol. 58(3), pages 311-326, September.
    20. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5680-:d:632355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.