IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i1p395-d474561.html
   My bibliography  Save this article

Speed Limit Induced CO 2 Reduction on Motorways: Enhancing Discussion Transparency through Data Enrichment of Road Networks

Author

Listed:
  • Jan Kunkler

    (Faculty of Business, Economics and Management Information Systems, University of Regensburg, 93053 Regensburg, Germany)

  • Maximilian Braun

    (Faculty of Business, Economics and Management Information Systems, University of Regensburg, 93053 Regensburg, Germany)

  • Florian Kellner

    (Faculty of Business, Economics and Management Information Systems, University of Regensburg, 93053 Regensburg, Germany)

Abstract

Considering climate change, recent political debates often focus on measures to reduce CO 2 emissions. One key component is the reduction of emissions produced by motorized vehicles. Since the amount of emission directly correlates to the velocity of a vehicle via energy consumption factors, a general speed limit is often proposed. This article presents a methodology to combine openly available topology data of road networks from OpenStreetMap (OSM) with pay-per-use API traffic data from TomTom to evaluate such measures transparently by analyzing historical real-world circumstances. From our exemplary case study of the German motorway network, we derive that most parts of the motorway network on average do not reach their maximum allowed speed throughout the day due to traffic, construction sites and general road utilization by network participants. Nonetheless our findings prove that the introduction of a speed limit of 120 km per hour on the German autobahn would restrict 50.74% of network flow kilometers for a CO 2 reduction of 7.43% compared to the unrestricted state.

Suggested Citation

  • Jan Kunkler & Maximilian Braun & Florian Kellner, 2021. "Speed Limit Induced CO 2 Reduction on Motorways: Enhancing Discussion Transparency through Data Enrichment of Road Networks," Sustainability, MDPI, vol. 13(1), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:395-:d:474561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fergusson, Malcolm, 1994. "The effect of vehicle speeds on emissions," Energy Policy, Elsevier, vol. 22(2), pages 103-106, February.
    2. Int Panis, L. & Beckx, C. & Broekx, S. & De Vlieger, I. & Schrooten, L. & Degraeuwe, B. & Pelkmans, L., 2011. "PM, NOx and CO2 emission reductions from speed management policies in Europe," Transport Policy, Elsevier, vol. 18(1), pages 32-37, January.
    3. Chao Gao & Jinliang Xu & Qunshan Li & Jie Yang, 2019. "The Effect of Posted Speed Limit on the Dispersion of Traffic Flow Speed," Sustainability, MDPI, vol. 11(13), pages 1-15, June.
    4. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    5. Tobias Haas & Hendrik Sander, 2020. "Decarbonizing Transport in the European Union: Emission Performance Standards and the Perspectives for a European Green Deal," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    6. Kapustin, Nikita O. & Grushevenko, Dmitry A., 2020. "Long-term electric vehicles outlook and their potential impact on electric grid," Energy Policy, Elsevier, vol. 137(C).
    7. Natalia Casado-Sanz & Begoña Guirao & Maria Attard, 2020. "Analysis of the Risk Factors Affecting the Severity of Traffic Accidents on Spanish Crosstown Roads: The Driver’s Perspective," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
    8. Taeho Park & Minho Kim & Chaemi Jang & Taeryang Choung & Kyung-A Sim & Dongju Seo & Seo Il Chang, 2018. "The Public Health Impact of Road-Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    9. Chester G. Wilmot & Mandar Khanal, 1999. "Effect of Speed limits on speed and safety: A review," Transport Reviews, Taylor & Francis Journals, vol. 19(4), pages 315-329, January.
    10. Reza S. Shirazinejad & Sunanda Dissanayake, 2020. "Speed Characteristics in Relation to Speed Limit Increase and Its Influence on Driver’s Speed Selection Behavior," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    11. Rita Kleizienė & Ovidijus Šernas & Audrius Vaitkus & Rūta Simanavičienė, 2019. "Asphalt Pavement Acoustic Performance Model," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    12. Takeshi Kuramochi & Mark Roelfsema & Angel Hsu & Swithin Lui & Amy Weinfurter & Sander Chan & Thomas Hale & Andrew Clapper & Andres Chang & Niklas Höhne, 2020. "Beyond national climate action: the impact of region, city, and business commitments on global greenhouse gas emissions," Climate Policy, Taylor & Francis Journals, vol. 20(3), pages 275-291, March.
    13. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    14. Alan Manne & Richard Richels, 1995. "The Greenhouse Debate: Econonmic Efficiency, Burden Sharing and Hedging Strategies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-38.
    15. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    16. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    17. Antti Lajunen & Klaus Kivekäs & Jari Vepsäläinen & Kari Tammi, 2020. "Influence of Increasing Electrification of Passenger Vehicle Fleet on Carbon Dioxide Emissions in Finland," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    18. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    19. Georges M. Arnaout & Jean-Paul Arnaout, 2014. "Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(2), pages 186-199, March.
    20. Jie Yang & Jinliang Xu & Chao Gao & Guohua Bai & Linfang Xie & Menghui Li, 2019. "Modeling of the Relationship Between Speed Limit and Characteristic Speed of Expressway Traffic Flow," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanghun Jo & Heungsoon Kim, 2021. "Developing a Traffic Model to Estimate Vehicle Emissions: An Application in Seoul, Korea," Sustainability, MDPI, vol. 13(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    3. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    4. Joanna Kisielińska & Monika Roman & Piotr Pietrzak & Michał Roman & Katarzyna Łukasiewicz & Elżbieta Kacperska, 2021. "Utilization of Renewable Energy Sources in Road Transport in EU Countries—TOPSIS Results," Energies, MDPI, vol. 14(22), pages 1-18, November.
    5. Luca Fredianelli & Marco Nastasi & Marco Bernardini & Francesco Fidecaro & Gaetano Licitra, 2020. "Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports," Sustainability, MDPI, vol. 12(5), pages 1-12, February.
    6. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    7. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    8. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    9. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    10. Lígia da Silva Lima & Louise Cocquyt & Lucia Mancini & Erasmo Cadena & Jo Dewulf, 2023. "The role of raw materials to achieve the Sustainable Development Goals: Tracing the risks and positive contributions of cobalt along the lithium‐ion battery supply chain," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 777-794, June.
    11. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    12. Rafael R. Maes & Geert Potters & Erik Fransen & Rowan Van Schaeren & Silvia Lenaerts, 2022. "Influence of Adding Low Concentration of Oxygenates in Mineral Diesel Oil and Biodiesel on the Concentration of NO, NO 2 and Particulate Matter in the Exhaust Gas of a One-Cylinder Diesel Generator," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    13. Ogundele Lasun Tunde & Okunlola Oluyemi Adewole & Mohannad Alobid & István Szűcs & Yacouba Kassouri, 2022. "Sources and Sectoral Trend Analysis of CO 2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches," Energies, MDPI, vol. 15(3), pages 1-12, January.
    14. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    15. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    16. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    17. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    18. Armanda Cetrulo & Giovanni Dosi & Angelo Moro & Linnea Nelli & Maria Enrica Virgillito, 2023. "Automation, digitalization and decarbonization in the European automotive industry: a roadmap towards a just transition," LEM Papers Series 2023/36, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. Richard S.J. Tol & Samuel Fankhauser & Richard G. Richels & Joel B. Smith, 2000. "How Much Damage Will Climate Change Do? Recent Estimates," Working Papers FNU-2, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2000.
    20. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:395-:d:474561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.