IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1351-d748412.html
   My bibliography  Save this article

Trends in Energy Security Education with a Focus on Renewable and Nonrenewable Sources

Author

Listed:
  • Jarosław Solarz

    (National Security Faculty, War Studies University, 00-910 Warsaw, Poland)

  • Małgorzata Gawlik-Kobylińska

    (Command and Management Faculty, War Studies University, 00-910 Warsaw, Poland)

  • Witold Ostant

    (National Security Faculty, War Studies University, 00-910 Warsaw, Poland)

  • Paweł Maciejewski

    (Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague, Czech Republic)

Abstract

Energy security education explores various issues, such as a secure and competitive economy and nuclear safety. In the context of energy transition and sustainable development, it also addresses the world’s reliance on nonrenewable and renewable energy sources. The aim of this study was to identify research trends pertaining to energy security education, paying particular attention to renewable and nonrenewable sources. This was accomplished with the use of mixed-method research in two steps. The first step was a text-mining and content analysis of publications on energy security education published on the Web of Science platform between 2016 and 2021. From 660 publications on energy security education, titles, abstracts, and keywords were extracted and analysed with NVivo software to identify the most frequent concepts on energy sources in publications. The concepts were associated with nonrenewable energy sources (coal, natural gas, uranium, petroleum, and fossil fuels), nuclear power, and renewable energy sources (hydro, geothermal, solar, tide/wave/ocean, wind, solid biofuels, biogases, liquid biofuels, and renewable municipal waste). The second step was conducting detailed searches with Boolean operators, where “energy security education” was juxtaposed with the distinguished keywords. All searches on energy security education showed that publication activity tended to decrease, while citations increased. The most explored topics concerned: “fossil fuels”, “oil, petroleum”, “renewable” energy, and “solar” energy sources. An increasing trend was observed for all renewable energy sources as well as selected nonrenewable sources: “oil, petroleum”, “nonrenewable”, and “coal”. Additionally, R-squared values were calculated to indicate the fit of the trendline to the model. Due to the technologically enhanced energy transition and didactic innovations, education focussing on energy sources is expected to remain in demand. Curricula will need to be revised in the future to better reflect this reality.

Suggested Citation

  • Jarosław Solarz & Małgorzata Gawlik-Kobylińska & Witold Ostant & Paweł Maciejewski, 2022. "Trends in Energy Security Education with a Focus on Renewable and Nonrenewable Sources," Energies, MDPI, vol. 15(4), pages 1, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1351-:d:748412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Ángeles Martín-Lara & Alicia Ronda, 2020. "Implementation of Modeling Tools for Teaching Biorefinery (Focused on Bioethanol Production) in Biochemical Engineering Courses: Dynamic Modeling of Batch, Semi-Batch, and Continuous Well-Stirred Bior," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    3. Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
    4. Renata Marks-Bielska & Stanisław Bielski & Katarzyna Pik & Krystyna Kurowska, 2020. "The Importance of Renewable Energy Sources in Poland’s Energy Mix," Energies, MDPI, vol. 13(18), pages 1-23, September.
    5. von Hippel, David & Suzuki, Tatsujiro & Williams, James H. & Savage, Timothy & Hayes, Peter, 2011. "Energy security and sustainability in Northeast Asia," Energy Policy, Elsevier, vol. 39(11), pages 6719-6730.
    6. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    7. Jesús Valverde-Berrocoso & María del Carmen Garrido-Arroyo & Carmen Burgos-Videla & María Belén Morales-Cevallos, 2020. "Trends in Educational Research about e-Learning: A Systematic Literature Review (2009–2018)," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    8. Niko Gentile & Jouri Kanters & Henrik Davidsson, 2020. "A Method to Introduce Building Performance Simulation to Beginners," Energies, MDPI, vol. 13(8), pages 1-15, April.
    9. Bompard, E. & Carpignano, A. & Erriquez, M. & Grosso, D. & Pession, M. & Profumo, F., 2017. "National energy security assessment in a geopolitical perspective," Energy, Elsevier, vol. 130(C), pages 144-154.
    10. Dias, Rubens Alves & Rios de Paula, Marília & Silva Rocha Rizol, Paloma Maria & Matelli, José Alexandre & Rodrigues de Mattos, Cristiano & Perrella Balestieri, José Antonio, 2021. "Energy education: Reflections over the last fifteen years," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Brini, Riadh, 2021. "Renewable and non-renewable electricity consumption, economic growth and climate change: Evidence from a panel of selected African countries," Energy, Elsevier, vol. 223(C).
    12. May Portuguez Castro & Marcela Georgina Gómez Zermeño, 2020. "Challenge Based Learning: Innovative Pedagogy for Sustainability through e-Learning in Higher Education," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    13. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Debin Fang & Shanshan Shi & Qian Yu, 2018. "Evaluation of Sustainable Energy Security and an Empirical Analysis of China," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yan & Wang, Si-Xia & Yao, Jian-Ting & Tong, Rui-Peng, 2023. "The impact of behavior safety management system on coal mine work safety: A system dynamics model of quadripartite evolutionary game," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    3. Watson, Bryan C & Morris, Zack B & Weissburg, Marc & Bras, Bert, 2023. "System of system design-for-resilience heuristics derived from forestry case study variants," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Cao, Quoc Dung & Miles, Scott B. & Choe, Youngjun, 2022. "Infrastructure recovery curve estimation using Gaussian process regression on expert elicited data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Serena Sandri & Hussam Hussein & Nooh Alshyab, 2020. "Sustainability of the Energy Sector in Jordan: Challenges and Opportunities," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    6. Liu, Jin & Zhai, Changhai & Yu, Peng, 2022. "A Probabilistic Framework to Evaluate Seismic Resilience of Hospital Buildings Using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    8. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
    9. Isaac Kofi Mensah & Guohua Zeng & Chuanyong Luo & Mengqiu Lu & Zhi-Wu Xiao, 2022. "Exploring the E-Learning Adoption Intentions of College Students Amidst the COVID-19 Epidemic Outbreak in China," SAGE Open, , vol. 12(2), pages 21582440221, April.
    10. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
    13. Jiang, Qiangqiang & Cai, Baoping & Zhang, Yanping & Xie, Min & Liu, Cuiwei, 2023. "Resilience assessment methodology of natural gas network system under random leakage," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    15. Joanna Kisielińska & Monika Roman & Piotr Pietrzak & Michał Roman & Katarzyna Łukasiewicz & Elżbieta Kacperska, 2021. "Utilization of Renewable Energy Sources in Road Transport in EU Countries—TOPSIS Results," Energies, MDPI, vol. 14(22), pages 1-18, November.
    16. Zhuyu Yang & Bruno Barroca & Katia Laffréchine & Alexandre Weppe & Aurélia Bony-Dandrieux & Nicolas Daclin, 2023. "A multi-criteria framework for critical infrastructure systems resilience," Post-Print hal-04135558, HAL.
    17. Wang, Nanxi & Yuen, Kum Fai, 2022. "Resilience assessment of waterway transportation systems: Combining system performance and recovery cost," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Pin Li & Jin-Suo Zhang, 2018. "A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost," Energies, MDPI, vol. 11(7), pages 1-28, June.
    19. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    20. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1351-:d:748412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.