IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5567-d629939.html
   My bibliography  Save this article

Is Green Recovery Enough? Analysing the Impacts of Post-COVID-19 Economic Packages

Author

Listed:
  • Pedro R. R. Rochedo

    (Centre for Energy and Environmental Economics (Cenergia), Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Brazil-Centro de Tecnologia, Sala I-034, Cidade Universitária, Rio de Janeiro 21941-972, Brazil)

  • Panagiotis Fragkos

    (E3 Modelling, 70-72 Panormou Street, PO 11523 Athens, Greece)

  • Rafael Garaffa

    (Centre for Energy and Environmental Economics (Cenergia), Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Brazil-Centro de Tecnologia, Sala I-034, Cidade Universitária, Rio de Janeiro 21941-972, Brazil
    European Commission, Joint Research Centre-JRC, 3-41092 Seville, Spain)

  • Lilia Caiado Couto

    (The Bartlett School of Environment, Energy and Resources, University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK)

  • Luiz Bernardo Baptista

    (Centre for Energy and Environmental Economics (Cenergia), Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Brazil-Centro de Tecnologia, Sala I-034, Cidade Universitária, Rio de Janeiro 21941-972, Brazil)

  • Bruno S. L. Cunha

    (Centre for Energy and Environmental Economics (Cenergia), Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Brazil-Centro de Tecnologia, Sala I-034, Cidade Universitária, Rio de Janeiro 21941-972, Brazil)

  • Roberto Schaeffer

    (Centre for Energy and Environmental Economics (Cenergia), Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Brazil-Centro de Tecnologia, Sala I-034, Cidade Universitária, Rio de Janeiro 21941-972, Brazil)

  • Alexandre Szklo

    (Centre for Energy and Environmental Economics (Cenergia), Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Brazil-Centro de Tecnologia, Sala I-034, Cidade Universitária, Rio de Janeiro 21941-972, Brazil)

Abstract

Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.

Suggested Citation

  • Pedro R. R. Rochedo & Panagiotis Fragkos & Rafael Garaffa & Lilia Caiado Couto & Luiz Bernardo Baptista & Bruno S. L. Cunha & Roberto Schaeffer & Alexandre Szklo, 2021. "Is Green Recovery Enough? Analysing the Impacts of Post-COVID-19 Economic Packages," Energies, MDPI, vol. 14(17), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5567-:d:629939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ziqiao Chen & Giovanni Marin & David Popp & Francesco Vona, 2020. "Green Stimulus in a Post-pandemic Recovery: the Role of Skills for a Resilient Recovery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 901-911, August.
    2. Mohammed AlKhars & Fazlul Miah & Hassan Qudrat-Ullah & Aymen Kayal, 2020. "A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries," Sustainability, MDPI, vol. 12(9), pages 1-43, May.
    3. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    4. Pedro R. R. Rochedo & Britaldo Soares-Filho & Roberto Schaeffer & Eduardo Viola & Alexandre Szklo & André F. P. Lucena & Alexandre Koberle & Juliana Leroy Davis & Raoni Rajão & Regis Rathmann, 2018. "The threat of political bargaining to climate mitigation in Brazil," Nature Climate Change, Nature, vol. 8(8), pages 695-698, August.
    5. repec:hal:spmain:info:hdl:2441/6n4g2a16an9rtamie2eh2rpkkm is not listed on IDEAS
    6. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    7. Cunha, Bruno S. L. & Garaffa, Rafael & Gurgel, Ângelo Costa, 2020. "TEA Model Documentation," Textos para discussão 520, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    8. Corinne Le Quéré & Glen P. Peters & Pierre Friedlingstein & Robbie M. Andrew & Josep G. Canadell & Steven J. Davis & Robert B. Jackson & Matthew W. Jones, 2021. "Fossil CO2 emissions in the post-COVID-19 era," Nature Climate Change, Nature, vol. 11(3), pages 197-199, March.
    9. Editorial, 2020. "Covid-19 and Climate Change," Journal, Review of Agrarian Studies, vol. 10(1), pages 5-6, January-J.
    10. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    11. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    12. Panagiotis Fragkos, 2021. "Assessing the Role of Carbon Capture and Storage in Mitigation Pathways of Developing Economies," Energies, MDPI, vol. 14(7), pages 1-20, March.
    13. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 0. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press, vol. 36(Supplemen), pages 359-381.
    14. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    15. World Bank, 2020. "Global Economic Prospects, June 2020," World Bank Publications - Books, The World Bank Group, number 33748, December.
    16. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Fragkos & Francesco Dalla Longa & Eleftheria Zisarou & Bob van der Zwaan & Anastasis Giannousakis & Amir Fattahi, 2023. "Exploring Model-Based Decarbonization and Energy Efficiency Scenarios with PROMETHEUS and TIAM-ECN," Energies, MDPI, vol. 16(18), pages 1-22, September.
    2. Norbert Bajkó & Zsolt Fülöp & Kinga Nagyné Pércsi, 2022. "Changes in the Innovation- and Marketing-Habits of Family SMEs in the Foodstuffs Industry, Caused by the Coronavirus Pandemic in Hungary," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    3. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    4. Koasidis, Konstantinos & Nikas, Alexandros & Van de Ven, Dirk-Jan & Xexakis, Georgios & Forouli, Aikaterini & Mittal, Shivika & Gambhir, Ajay & Koutsellis, Themistoklis & Doukas, Haris, 2022. "Towards a green recovery in the EU: Aligning further emissions reductions with short- and long-term energy-sector employment gains," Energy Policy, Elsevier, vol. 171(C).
    5. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2022. "An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption," Energies, MDPI, vol. 15(21), pages 1-26, October.
    6. Panagiotis Fragkos & Pelopidas Siskos, 2022. "Energy Systems Analysis and Modelling towards Decarbonisation," Energies, MDPI, vol. 15(6), pages 1-4, March.
    7. Draeger, Rebecca & Cunha, Bruno S.L. & Müller-Casseres, Eduardo & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2022. "Stranded crude oil resources and just transition: Why do crude oil quality, climate ambitions and land-use emissions matter," Energy, Elsevier, vol. 255(C).
    8. Behnam Zakeri & Katsia Paulavets & Leonardo Barreto-Gomez & Luis Gomez Echeverri & Shonali Pachauri & Benigna Boza-Kiss & Caroline Zimm & Joeri Rogelj & Felix Creutzig & Diana Ürge-Vorsatz & David G. , 2022. "Pandemic, War, and Global Energy Transitions," Energies, MDPI, vol. 15(17), pages 1-23, August.
    9. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    10. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2023. "Investigating the potential of low-carbon pathways for hydrocarbon-dependent rentier states: Sociotechnical transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    11. Crnčec, Danijel & Penca, Jerneja & Lovec, Marko, 2023. "The COVID-19 pandemic and the EU: From a sustainable energy transition to a green transition?," Energy Policy, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    2. Sands, Ronald D. & Malcolm, Scott A. & Suttles, Shellye A. & Marshall, Elizabeth, 2017. "Dedicated Energy Crops and Competition for Agricultural Land," Economic Research Report 252445, United States Department of Agriculture, Economic Research Service.
    3. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    4. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    5. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    6. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    7. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    8. Athanasios Thomas Vafeidis & Lena Reimann & Gerald Jan Ellen & Gunnel Goransson & Gerben Koers & Lisa Van Well & Bente Vollstedt & Maureen Tsakiris & Amy Oen, 2024. "Harmonizing the Development of Local Socioeconomic Scenarios: A Participatory Downscaling Approach Applied in Four European Case Studies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    9. Srivastav, Sugandha & Rafaty, Ryan, 2021. "Five Worlds of Political Strategy in the Climate Movement," INET Oxford Working Papers 2021-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    10. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    11. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    12. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Angela Köppl & Margit Schratzenstaller, 2022. "Macroeconomic Effects of Green Recovery Programmes. Conceptual Framing and a Review of the Empirical Literature," WIFO Working Papers 646, WIFO.
    14. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    15. Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
    16. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    17. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    19. Liu, Yinshan & Wang, Yuanfeng & Shi, Chengcheng & Zhang, Weijun & Luo, Wei & Wang, Jingjing & Li, Keping & Yeung, Ngai & Kite, Steve, 2022. "Assessing the CO2 reduction target gap and sustainability for bridges in China by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5567-:d:629939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.