IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4218-d593291.html
   My bibliography  Save this article

Torrefaction and Thermochemical Properties of Agriculture Residues

Author

Listed:
  • Javaid Akhtar

    (Institute of Chemical Engineering & Technology, University of the Punjab, Lahore 54590, Pakistan)

  • Muhammad Imran

    (Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia)

  • Arshid Mahmood Ali

    (Department of Chemical & Materials Engineering, King Abdul Aziz University, Jeddah 21589, Saudi Arabia)

  • Zeeshan Nawaz

    (Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia)

  • Ayyaz Muhammad

    (Institute of Chemical Engineering & Technology, University of the Punjab, Lahore 54590, Pakistan)

  • Rehan Khalid Butt

    (Institute of Energy & Environmental Engineering, University of the Punjab, Lahore 54590, Pakistan)

  • Maria Shahid Jillani

    (Institute of Energy & Environmental Engineering, University of the Punjab, Lahore 54590, Pakistan)

  • Hafiz Amir Naeem

    (Institute of Energy & Environmental Engineering, University of the Punjab, Lahore 54590, Pakistan)

Abstract

In this study, the densification of three agriculture waste biomasses (corn cobs, cotton stalks, and sunflower) is investigated using the torrefaction technique. The samples were pyrolyzed under mild temperature conditions (200–320 °C) and at different residence times (10 min–60 min). The thermal properties of the obtained bio-char samples were analyzed via thermo-gravimetric analysis (TGA). Compositional analysis of the torrefied samples was also carried out to determine the presence of hemicellulose, cellulose, and lignin contents. According to the results of this study, optimum temperature conditions were found to be 260 °C–300 °C along with a residence time of 20 min–30 min. Based on the composition analysis, it was found that biochar contains more lignin and celluloses and lower hemicellulose contents than do the original samples. The removal of volatile hemicelluloses broke the interlocking of biomass building blocks, rendering biochar brittle, grindable, and less reactive. The results of this study would be helpful in bettering our understanding of the conversion of agricultural waste residues into valuable, solid biofuels for use in energy recovery schemes. The optimum temperature condition, residence time, and GCV for torrefied corn cobs were found to be 290 °C, 20 min, and 5444 kcal/kg, respectively. The optimum temperature condition, residence time, and GCV for torrefied cotton balls were found to be 270 °C, 30 min, and 4481 Kcal/kg, respectively. In the case of sunflower samples, the mass yield of the torrefied sample decreased from 85% to 71% by increasing the residence time from 10 min to 60 min, respectively.

Suggested Citation

  • Javaid Akhtar & Muhammad Imran & Arshid Mahmood Ali & Zeeshan Nawaz & Ayyaz Muhammad & Rehan Khalid Butt & Maria Shahid Jillani & Hafiz Amir Naeem, 2021. "Torrefaction and Thermochemical Properties of Agriculture Residues," Energies, MDPI, vol. 14(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4218-:d:593291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
    2. Cassie Marie Welker & Vimal Kumar Balasubramanian & Carloalberto Petti & Krishan Mohan Rai & Seth DeBolt & Venugopal Mendu, 2015. "Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts," Energies, MDPI, vol. 8(8), pages 1-23, July.
    3. Margareta Novian Cahyanti & Tharaka Rama Krishna C. Doddapaneni & Marten Madissoo & Linnar Pärn & Indrek Virro & Timo Kikas, 2021. "Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics," Energies, MDPI, vol. 14(10), pages 1-19, May.
    4. Jeeban Poudel & Sujeeta Karki & Sea Cheon Oh, 2018. "Valorization of Waste Wood as a Solid Fuel by Torrefaction," Energies, MDPI, vol. 11(7), pages 1-10, June.
    5. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    6. Marcin Bajcar & Grzegorz Zaguła & Bogdan Saletnik & Maria Tarapatskyy & Czesław Puchalski, 2018. "Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass," Energies, MDPI, vol. 11(11), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Maja Ivanovski & Darko Goričanec & Danijela Urbancl, 2023. "The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes," Energies, MDPI, vol. 16(9), pages 1-15, April.
    4. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    5. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    6. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    7. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    8. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    9. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    10. Tianjiao Cheng & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2020. "Comparison of Torrefaction and Hydrothermal Treatment as Pretreatment Technologies for Rice Husks," Energies, MDPI, vol. 13(19), pages 1-20, October.
    11. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    12. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
    13. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    14. Tiziana Maria Sirangelo & Richard Andrew Ludlow & Tatiana Chenet & Luisa Pasti & Natasha Damiana Spadafora, 2023. "Multi-Omics and Genome Editing Studies on Plant Cell Walls to Improve Biomass Quality," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    15. Fan, Yee Van & Romanenko, Sergey & Gai, Limei & Kupressova, Ekaterina & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2021. "Biomass integration for energy recovery and efficient use of resources: Tomsk Region," Energy, Elsevier, vol. 235(C).
    16. Min-Hao Yuan & Chia-Chi Chang & Tsung-Chi Hsu & Je-Lueng Shie & Yi-Hung Chen & Ching-Yuan Chang & Cheng-Fang Lin & Chang-Ping Yu & Chao-Hsiung Wu & Manh Van Do & Far-Ching Lin & Duu-Jong Lee & Bo-Lian, 2021. "A Technical Analysis of Solid Recovered Fuel from Torrefied Jatropha Seed Residue via a Two-Stage Mechanical Screw Press and Solvent Extraction Process," Energies, MDPI, vol. 14(23), pages 1-13, November.
    17. Rahim Zahedi & Alireza Zahedi & Abolfazl Ahmadi, 2022. "Strategic Study for Renewable Energy Policy, Optimizations and Sustainability in Iran," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    18. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    19. Li Ji & Pengfei Li & Fuhou Lei & Xianliang Song & Jianxin Jiang & Kun Wang, 2020. "Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane," Energies, MDPI, vol. 13(20), pages 1-17, October.
    20. Marek Wróbel & Marcin Jewiarz & Krzysztof Mudryk & Adrian Knapczyk, 2020. "Influence of Raw Material Drying Temperature on the Scots Pine ( Pinus sylvestris L.) Biomass Agglomeration Process—A Preliminary Study," Energies, MDPI, vol. 13(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4218-:d:593291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.