IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3137-d801940.html
   My bibliography  Save this article

Reactivity Effects of Inorganic Content in Biomass Gasification: A Review

Author

Listed:
  • Anna Trubetskaya

    (Department of Engineering, University of Limerick, Castletroy, V94 T9PX Limerick, Ireland)

Abstract

This review article discusses the effects of inorganic content and mechanisms on raw biomass and char during gasification. The impacts of the inherent inorganics and externally added inorganic compounds are summarized based on a literature search from the most recent 40 years. The TGA and larger-scale studies involving K-, Ca-, and Si-related mechanisms are critically reviewed with the aim of understanding the reaction mechanisms and kinetics. Differences between the reaction pathways of inorganic matter, and subsequent effects on the reactivity during gasification, are discussed. The present results illustrate the complexity of ash transformation phenomena, which have a strong impact on the design of gasifiers as well as further operation and process control. The impregnation and mixing of catalytic compounds into raw biomass are emphasized as a potential solution to avoid reactivity-related operational challenges during steam and CO 2 gasification. This review clearly identifies a gap in experimental knowledge at the micro and macro levels in the advanced modelling of inorganics transformation with respect to gasification reactivity.

Suggested Citation

  • Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3137-:d:801940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trubetskaya, Anna & Leahy, James J. & Yazhenskikh, Elena & Müller, Michael & Layden, Peter & Johnson, Robert & Ståhl, Kenny & Monaghan, Rory F.D., 2019. "Characterization of woodstove briquettes from torrefied biomass and coal," Energy, Elsevier, vol. 171(C), pages 853-865.
    2. González-Vázquez, M.P. & García, R. & Gil, M.V. & Pevida, C. & Rubiera, F., 2018. "Unconventional biomass fuels for steam gasification: Kinetic analysis and effect of ash composition on reactivity," Energy, Elsevier, vol. 155(C), pages 426-437.
    3. Lin, Leteng & Strand, Michael, 2013. "Investigation of the intrinsic CO2 gasification kinetics of biomass char at medium to high temperatures," Applied Energy, Elsevier, vol. 109(C), pages 220-228.
    4. Bruhn, Thomas & Naims, Henriette & Olfe-Kräutlein, Barbara, 2016. "Separating the debate on CO2 utilisation from carbon capture and storage," Environmental Science & Policy, Elsevier, vol. 60(C), pages 38-43.
    5. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    6. Trubetskaya, Anna & Budarin, Vitaliy & Arshadi, Mehrdad & Magalhães, Duarte & Kazanç, Feyza & Hunt, Andrew John, 2021. "Supercritical extraction of biomass as an effective pretreatment step for the char yield control in pyrolysis," Renewable Energy, Elsevier, vol. 170(C), pages 107-117.
    7. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses," Energy, Elsevier, vol. 71(C), pages 456-467.
    8. Daniel L. Sanchez & Daniel M. Kammen, 2016. "A commercialization strategy for carbon-negative energy," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    9. Kirtania, Kawnish & Axelsson, Joel & Matsakas, Leonidas & Christakopoulos, Paul & Umeki, Kentaro & Furusjö, Erik, 2017. "Kinetic study of catalytic gasification of wood char impregnated with different alkali salts," Energy, Elsevier, vol. 118(C), pages 1055-1065.
    10. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Surup, Gerrit Ralf & Nielsen, Henrik Kofoed & Großarth, Marius & Deike, Rüdiger & Van den Bulcke, Jan & Kibleur, Pierre & Müller, Michael & Ziegner, Mirko & Yazhenskikh, Elena & Beloshapkin, Sergey & , 2020. "Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries," Energy, Elsevier, vol. 193(C).
    12. Saiman Ding & Efthymios Kantarelis & Klas Engvall, 2020. "Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures," Energies, MDPI, vol. 13(19), pages 1-19, September.
    13. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    14. Ahmed, I.I. & Gupta, A.K., 2011. "Kinetics of woodchips char gasification with steam and carbon dioxide," Applied Energy, Elsevier, vol. 88(5), pages 1613-1619, May.
    15. Trubetskaya, Anna & Surup, Gerrit & Shapiro, Alexander & Bates, Richard B., 2017. "Modeling the influence of potassium content and heating rate on biomass pyrolysis," Applied Energy, Elsevier, vol. 194(C), pages 199-211.
    16. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    17. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Ellis, Naoko & Lim, C. Jim & Butler, James W., 2015. "Biomass/coal steam co-gasification integrated with in-situ CO2 capture," Energy, Elsevier, vol. 83(C), pages 326-336.
    18. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    19. Guizani, Chamseddine & Jeguirim, Mejdi & Gadiou, Roger & Escudero Sanz, Fransisco Javier & Salvador, Sylvain, 2016. "Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars," Energy, Elsevier, vol. 112(C), pages 133-145.
    20. Marcin Bajcar & Grzegorz Zaguła & Bogdan Saletnik & Maria Tarapatskyy & Czesław Puchalski, 2018. "Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass," Energies, MDPI, vol. 11(11), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Robert Heinrich & André Herrmann & Andy Gradel & Marco Klemm & Tobias Plessing, 2023. "Extensive Experimental Characterization with Kinetic Data for the Gasification Simulation of Solid Biofuels," Energies, MDPI, vol. 16(6), pages 1-31, March.
    2. N., Mohammed Asheruddin & Shivapuji, Anand M. & Dasappa, Srinivasaiah, 2023. "Thermochemical conversion of millimeter-sized single char particle in steam dominated environments under varying temperature, reactant composition and flux—Experimental and numerical analysis," Energy, Elsevier, vol. 269(C).
    3. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    4. Juraj Kukuruzović & Ana Matin & Mislav Kontek & Tajana Krička & Božidar Matin & Ivan Brandić & Alan Antonović, 2023. "The Effects of Demineralization on Reducing Ash Content in Corn and Soy Biomass with the Goal of Increasing Biofuel Quality," Energies, MDPI, vol. 16(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    3. Elsaddik, Majd & Nzihou, Ange & Delmas, Michel & Delmas, Guo-Hua, 2023. "Steam gasification of cellulose pulp char: Insights on experimental and kinetic study with a focus on the role of Silicon," Energy, Elsevier, vol. 271(C).
    4. Shengguo Zhao & Liang Ding & Yun Ruan & Bin Bai & Zegang Qiu & Zhiqin Li, 2021. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char," Energies, MDPI, vol. 14(21), pages 1-23, November.
    5. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    6. Lajili, M. & Guizani, C. & Escudero Sanz, F.J. & Jeguirim, M., 2018. "Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues," Energy, Elsevier, vol. 150(C), pages 61-68.
    7. Saiman Ding & Efthymios Kantarelis & Klas Engvall, 2020. "Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures," Energies, MDPI, vol. 13(19), pages 1-19, September.
    8. Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Lopez, Gartzen & Alvarez, Jon & Amutio, Maider & Arregi, Aitor & Bilbao, Javier & Olazar, Martin, 2016. "Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor," Energy, Elsevier, vol. 107(C), pages 493-501.
    10. Dupont, Capucine & Jacob, Sylvain & Marrakchy, Khalil Ould & Hognon, Céline & Grateau, Maguelone & Labalette, Françoise & Da Silva Perez, Denilson, 2016. "How inorganic elements of biomass influence char steam gasification kinetics," Energy, Elsevier, vol. 109(C), pages 430-435.
    11. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    12. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Ilkka Hannula & David M Reiner, 2017. "The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles," Working Papers EPRG 1721, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    15. Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and novel syngas cleaning. Part 1: Gasifier performance," Energy, Elsevier, vol. 157(C), pages 96-105.
    16. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    17. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuan-Cheng & Baroutian, Saeid, 2020. "Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis," Energy, Elsevier, vol. 199(C).
    18. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    19. Gao, Xiaoyan & Zhang, Yaning & Xu, Fei & Yin, Zhaoqin & Wang, Yingying & Bao, Fubing & Li, Bingxi, 2019. "Experimental and kinetic studies on the intrinsic reactivities of rice husk char," Renewable Energy, Elsevier, vol. 135(C), pages 608-616.
    20. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3137-:d:801940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.