IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp853-865.html
   My bibliography  Save this article

Characterization of woodstove briquettes from torrefied biomass and coal

Author

Listed:
  • Trubetskaya, Anna
  • Leahy, James J.
  • Yazhenskikh, Elena
  • Müller, Michael
  • Layden, Peter
  • Johnson, Robert
  • Ståhl, Kenny
  • Monaghan, Rory F.D.

Abstract

Using waste biomass materials offers the potential to reduce the greenhouse gas emissions from fossil fuels. Torrefaction is very useful for improving the fuel properties of biomass in order to better match those of coal. The aim of this work is to compare the properties of torrefied low quality biomass briquettes against coal equivalents. The composition of the briquettes was characterized by 13C CP/MAS, proximate analysis, and X-ray diffraction and the results were compared with equilibrium calculations. In addition to these techniques, we report for the first time on the use of XμCT for characterizing such materials. The XμCT analysis showed that the briquette structure contains carbon, binder and inorganic matter, with quartz retained from the original feedstock in torrefied biomass and coal briquettes. The CO2 reactivity of pulverized briquettes was investigated by thermogravimetric analysis. Results showed that the inorganic matter influences the reactivity less than the organic composition and porosity. Importantly from a technological standpoint, the increase in binder concentration and replacement of starch with resin binder did not influence the reactivity and calorific value of a pulverized briquette.

Suggested Citation

  • Trubetskaya, Anna & Leahy, James J. & Yazhenskikh, Elena & Müller, Michael & Layden, Peter & Johnson, Robert & Ståhl, Kenny & Monaghan, Rory F.D., 2019. "Characterization of woodstove briquettes from torrefied biomass and coal," Energy, Elsevier, vol. 171(C), pages 853-865.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:853-865
    DOI: 10.1016/j.energy.2019.01.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    3. Shuren Chen & Yunfei Zhao & Zhong Tang & Hantao Ding & Zhan Su & Zhao Ding, 2022. "Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    4. Tabakaev, Roman & Kahn, Victor & Dubinin, Yury & Rudmin, Maxim & Yazykov, Nikolay & Skugarov, Artem & Alekseenko, Eduard & Zavorin, Alexander & Preis, Sergei, 2022. "High-strength fuel pellets made of flour milling and coal slack wastes," Energy, Elsevier, vol. 243(C).
    5. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    6. Oscar Araque & Nelson Arzola & Laura Gallego, 2022. "Mechanical Behavior of Briquettes Made from a Mixture of Sawdust and Rice Husks for Commercialization," Resources, MDPI, vol. 11(3), pages 1-18, March.
    7. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "Production and Characterization of Hybrid Briquettes from Corncobs and Oil Palm Trunk Bark under a Low Pressure Densification Technique," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    8. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    9. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    10. Rosa Martins & Haylemar de Nazaret Cardenas-Rodriguez & Levy Ely Lacerda Oliveira & Erik Leandro Bonaldi & Frederico de Oliveira Assuncao & Germano Lambert-Torres & Helcio Francisco Villa-Nova & Wilso, 2022. "Technical and Economic Analysis of the Implementation of a Self-Sustainable Briquetting Process for Electric Generation," Energies, MDPI, vol. 15(6), pages 1-14, March.
    11. Surup, Gerrit Ralf & Nielsen, Henrik Kofoed & Großarth, Marius & Deike, Rüdiger & Van den Bulcke, Jan & Kibleur, Pierre & Müller, Michael & Ziegner, Mirko & Yazhenskikh, Elena & Beloshapkin, Sergey & , 2020. "Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries," Energy, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
    2. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    3. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    4. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    5. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    6. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    7. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    10. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    11. Aneta Saletnik & Bogdan Saletnik & Czesław Puchalski, 2021. "Modification of Energy Parameters in Wood Pellets with the Use of Waste Cooking Oil," Energies, MDPI, vol. 14(20), pages 1-16, October.
    12. González, William A. & López, Diana & Pérez, Juan F., 2020. "Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders," Renewable Energy, Elsevier, vol. 147(P1), pages 1139-1150.
    13. Johanna Gaitán-Alvarez & Roger Moya & Allen Puente-Urbina & Ana Rodriguez-Zuñiga, 2017. "Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 10(8), pages 1-17, August.
    14. Montoya, Jorge & Valdés, Carlos & Chaquea, Hernando & Pecha, M. Brennan & Chejne, Farid, 2020. "Surplus electricity production and LCOE estimation in Colombian palm oil mills using empty fresh bunches (EFB) as fuel," Energy, Elsevier, vol. 202(C).
    15. Kacper Świechowski & Małgorzata Leśniak & Andrzej Białowiec, 2021. "Medical Peat Waste Upcycling to Carbonized Solid Fuel in the Torrefaction Process," Energies, MDPI, vol. 14(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:853-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.