Author
Listed:
- Kanageswari Singara veloo
(Biomass and Bioenergy Research Group, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada)
- Anthony Lau
(Biomass and Bioenergy Research Group, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada)
- Shahab Sokhansanj
(Biomass and Bioenergy Research Group, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada)
Abstract
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet production without external binders or changes to die conditions remain scarce. This paper investigated the production of fuel pellets from torrefied biomass without using external binders or adjusting pelletization parameters. Experiments were conducted using a mild torrefaction temperature (230 °C and 250 °C) and shorter residence time (10, 15, and 30 min). The torrefied materials were then subjected to pelletization using a single-pellet press; and the influence of torrefaction on the mechanical durability, hydrophobicity, and fuel characteristics of the pellets was examined. Results indicated that the mass loss ranging from 10 to 20% among the mild torrefaction treatments was less than the typical extent of mass loss due to severe torrefaction. Pellets made from torrefied biomass (torrefied pellets) had improvement in the hydrophobicity (moisture resistance) when compared to pellets made from untreated biomass (untreated pellets). Improved hydrophobicity is important for storage and transportation of pellets that are exposed to humid environmental conditions, as it reduces the risk of pellet degradation and spoilage. Thermogravimetric analysis of the pyrolysis and combustion behaviour of torrefied pellets indicated the improvement of fuel characteristics in terms of a much higher comprehensive pyrolysis index and greater thermal stability compared to untreated pellets, as evidenced by the prolonged burnout time and reduced combustion characteristics index. Residence time had a more significant impact on pellet durability than temperature, but the durability of the torrefied pellets was lower than that of the untreated pellets. Further research is required to explore the feasibility of producing binder-free durable pellets under mild torrefaction conditions. Overall, the study demonstrated that mild torrefaction could enhance the fuel quality and moisture resistance of biomass pellets, offering promising advantages for energy applications, despite some trade-offs in mechanical durability.
Suggested Citation
Kanageswari Singara veloo & Anthony Lau & Shahab Sokhansanj, 2025.
"Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass,"
Energies, MDPI, vol. 18(13), pages 1-18, July.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3464-:d:1692258
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3464-:d:1692258. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.