IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2919-d178446.html
   My bibliography  Save this article

Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass

Author

Listed:
  • Marcin Bajcar

    (Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland)

  • Grzegorz Zaguła

    (Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland)

  • Bogdan Saletnik

    (Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland)

  • Maria Tarapatskyy

    (Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland)

  • Czesław Puchalski

    (Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland)

Abstract

Waste biomass from plant production is an important raw material for producing energy from renewable sources. Capabilities and technologies of processing are still being improved and modernized in order to achieve the highest energy efficiency. This study assesses energetic properties of wheat straw, rapeseed, and willow. The material was subjected to heat treatment, i.e., torrefaction process at temperatures of 220, 260, and 300 °C for the duration of 60, 75, and 90 min. Measurements were performed to compare parameters of raw biomass and the torrefied products. The materials were examined and compared for the contents of moisture; biogenic elements N, C, and H; as well as calorific value, ash, and volatiles. Measurements were also performed to assess the composition of biomass in terms of particle sizes. Analysis of the results made it possible to determine optimal parameters for carrying out the torrefaction process. The use of the torrefaction process made it possible to obtain a material with an increased calorific value by more than 20%, and a 2–3 times higher content of elements in the powdered material, as well as to improve the grinding of the material. This information will enable the development of biomass thermal treatment technologies towards the use of waste biomass from agricultural production.

Suggested Citation

  • Marcin Bajcar & Grzegorz Zaguła & Bogdan Saletnik & Maria Tarapatskyy & Czesław Puchalski, 2018. "Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass," Energies, MDPI, vol. 11(11), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2919-:d:178446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Wu, Jheng-Syun, 2009. "An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace," Energy, Elsevier, vol. 34(10), pages 1458-1466.
    2. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    3. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    4. Jeeban Poudel & Sujeeta Karki & Sea Cheon Oh, 2018. "Valorization of Waste Wood as a Solid Fuel by Torrefaction," Energies, MDPI, vol. 11(7), pages 1-10, June.
    5. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    3. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    4. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    5. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    7. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    8. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    9. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    10. Javaid Akhtar & Muhammad Imran & Arshid Mahmood Ali & Zeeshan Nawaz & Ayyaz Muhammad & Rehan Khalid Butt & Maria Shahid Jillani & Hafiz Amir Naeem, 2021. "Torrefaction and Thermochemical Properties of Agriculture Residues," Energies, MDPI, vol. 14(14), pages 1-13, July.
    11. Arkadiusz Dyjakon & Tomasz Noszczyk & Martyna Smędzik, 2019. "The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing," Energies, MDPI, vol. 12(24), pages 1-17, December.
    12. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    13. Bogdan Saletnik & Marcin Bajcar & Aneta Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2021. "Effect of the Pyrolysis Process Applied to Waste Branches Biomass from Fruit Trees on the Calorific Value of the Biochar and Dust Explosivity," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    3. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    4. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    5. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    7. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    8. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    9. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    10. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    11. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    12. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    13. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    14. Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
    15. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    16. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    17. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    18. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    19. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    20. Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2919-:d:178446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.