IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp181-189.html
   My bibliography  Save this article

Energetic and exergetic evaluation of residual biomass in a torrefaction process

Author

Listed:
  • Granados, D.A.
  • Velásquez, H.I.
  • Chejne, F.

Abstract

A torrefaction process in a TGA (Termo-gravimeter analyzer) for six different types of residual biomass (sugarcane bagasse, banana rachis, rice husk, palm oil fiber, sawdust and coffee waste) was developed in this paper. These six materials were evaluated before and after the torrefaction process through HHV (High Heating Value) and energetic and exergetic balances in order to find a promising solid fuel biomass in a torrefaction process. Torrefaction is a thermal process performed in an inert atmosphere at temperatures between 200 and 300 °C, with residence times lower than 60 min and heating rates lower than 20 °C/min. Its aim is to improve biomass as a solid fuel. In this processing, the lignocellulosic components are degraded (hemicellulose and cellulose are more degraded than lignin), having as result a biomass with a predominant amount of lignin. In this work, the torrefaction process was carried out at a temperature of 250 °C in an inert atmosphere with 10 °C/min of heating rate and a residence time of 30 min. As a result, it was found that the biggest and lowest increases in HHV for torrefied biomass were14.5% and 5.2% for sawdust and palm oil fiber, respectively. Sawdust was found to have the best performance in the torrefaction process evaluated from the energy yield parameter but rice husk was the best biomass in the energetic balances of the process. Energy and exergy balances show that palm oil fiber and banana rachis are the least efficient biomass in the torrefaction process.

Suggested Citation

  • Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:181-189
    DOI: 10.1016/j.energy.2014.05.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pentananunt, Ranu & Rahman, A.N.M.Mizanur & Bhattacharya, S.C., 1990. "Upgrading of biomass by means of torrefaction," Energy, Elsevier, vol. 15(12), pages 1175-1179.
    2. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    3. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    4. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    5. Park, Sang-Woo & Jang, Cheol-Hyeon & Baek, Kyung-Ryul & Yang, Jae-Kyung, 2012. "Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products," Energy, Elsevier, vol. 45(1), pages 676-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seok-Jun Kim & Kwang-Cheol Oh & Sun-Yong Park & Young-Min Ju & La-Hoon Cho & Chung-Geon Lee & Min-Jun Kim & In-Seon Jeong & Dae-Hyun Kim, 2021. "Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction," Energies, MDPI, vol. 14(19), pages 1-14, September.
    2. Nobre, Catarina & Vilarinho, Cândida & Alves, Octávio & Mendes, Benilde & Gonçalves, Margarida, 2019. "Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties," Energy, Elsevier, vol. 181(C), pages 66-76.
    3. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    4. Brojolall, Neeha & Surroop, Dinesh, 2022. "Improving fuel characteristics through torrefaction," Energy, Elsevier, vol. 246(C).
    5. da Silva, Carlos Miguel Simões & Carneiro, Angélica de Cássia Oliveira & Vital, Benedito Rocha & Figueiró, Clarissa Gusmão & Fialho, Lucas de Freitas & de Magalhães, Mateus Alves & Carvalho, Amélia Gu, 2018. "Biomass torrefaction for energy purposes – Definitions and an overview of challenges and opportunities in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2426-2432.
    6. Xue, Junjie & Goldfarb, Jillian L., 2018. "Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels," Energy, Elsevier, vol. 152(C), pages 1-12.
    7. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    8. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    9. Atienza-Martínez, María & Ábrego, Javier & Mastral, José Francisco & Ceamanos, Jesús & Gea, Gloria, 2018. "Energy and exergy analyses of sewage sludge thermochemical treatment," Energy, Elsevier, vol. 144(C), pages 723-735.
    10. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    11. Asamoah, Bernice & Nikiema, Josiane & Gebrezgabher, Solomie & Odonkor, Elsie & Njenga, M., 2016. "A review on production, marketing and use of fuel briquettes," IWMI Reports 257959, International Water Management Institute.
    12. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.
    13. Gangil, Sandip & Bhargav, Vinod Kumar, 2018. "Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights," Energy, Elsevier, vol. 142(C), pages 1066-1073.
    14. Germán Álvarez-López & Alejandra María Múnera & Juan G. Villegas, 2023. "Multicriteria Decision-Making Tools for the Selection of Biomasses as Supplementary Cementitious Materials," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    15. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    3. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    4. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    6. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    7. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    8. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Berrueco, C. & Recari, J. & Güell, B. Matas & Alamo, G. del, 2014. "Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed," Energy, Elsevier, vol. 70(C), pages 68-78.
    10. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    11. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    12. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    14. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    15. Gunarathne, Duleeka Sandamali & Mueller, Andreas & Fleck, Sabine & Kolb, Thomas & Chmielewski, Jan Karol & Yang, Weihong & Blasiak, Wlodzimierz, 2014. "Gasification characteristics of steam exploded biomass in an updraft pilot scale gasifier," Energy, Elsevier, vol. 71(C), pages 496-506.
    16. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    17. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    18. Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
    19. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
    20. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:181-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.