IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp829-835.html
   My bibliography  Save this article

Characterization of solid and liquid products from bamboo torrefaction

Author

Listed:
  • Chen, Wei-Hsin
  • Liu, Shih-Hsien
  • Juang, Tarng-Tzuen
  • Tsai, Chi-Ming
  • Zhuang, Yi-Qing

Abstract

Solid and liquid products from bamboo (Bambusa sinospinosa) torrefaction were analyzed in the present study. Three different torrefaction temperatures of 250, 300, and 350°C and three torrefaction durations of 30, 60, and 90min are taken into consideration. The properties of both solid and liquid products are sensitive to the torrefaction temperature, whereas the influence of duration is relatively slight. Among the torrefaction temperatures of 250, 300, and 350°C, 300°C is recommended for upgrading bamboo in that it gives a more appropriate operation to enhance the higher heating value of the biomass while the solid yield is not too low. In the liquid products or condensable liquids, acids, alcohols, ketones, phenols, aldehydes, esters, etc. are detected. The contents of acids and alcohols in the liquids are richer, and acid formation is especially significant at the torrefaction temperature of 250°C. The pH value of the condensable liquid is in the range of 2.27 and 2.60 which is close to that of bio-oil. The water content in the liquid product is around 50% and an increase in torrefaction temperature lowers the content. After undergoing dewatering, the calorific value of the liquid product is enlarged in a significant way. The results show that dewatering is an important process to upgrade the liquid product as a fuel.

Suggested Citation

  • Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:829-835
    DOI: 10.1016/j.apenergy.2015.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    3. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    4. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.
    5. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    6. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    7. Chen, Wei-Hsin & Hsu, Huan-Chun & Lu, Ke-Miao & Lee, Wen-Jhy & Lin, Ta-Chang, 2011. "Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass," Energy, Elsevier, vol. 36(5), pages 3012-3021.
    8. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    9. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    10. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    11. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    12. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Kai Chih & Wei-Hsin Chen & Hwai Chyuan Ong & Pau Loke Show, 2019. "Product Characteristics of Torrefied Wood Sawdust in Normal and Vacuum Environments," Energies, MDPI, vol. 12(20), pages 1-17, October.
    2. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    3. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    4. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    5. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    6. Chen, Wei-Hsin & Lin, Shih-Cheng, 2018. "Biogas partial oxidation in a heat recirculation reactor for syngas production and CO2 utilization," Applied Energy, Elsevier, vol. 217(C), pages 113-125.
    7. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    8. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    9. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    10. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    13. Arteaga-Pérez, Luis E. & Segura, Cristina & Bustamante-García, Verónica & Gómez Cápiro, Oscar & Jiménez, Romel, 2015. "Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures," Energy, Elsevier, vol. 93(P2), pages 1731-1741.
    14. da Silva, Jean Constantino Gomes & Pereira, Jefferson Leque Claudio & Andersen, Silvia Layara Floriani & Moreira, Regina de Fatima Peralta Muniz & José, Humberto Jorge, 2020. "Torrefaction of ponkan peel waste in tubular fixed-bed reactor: In-depth bioenergetic evaluation of torrefaction products," Energy, Elsevier, vol. 210(C).
    15. Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind, 2017. "Comparative study on the thermal degradation of dry- and wet-torrefied woods," Applied Energy, Elsevier, vol. 185(P2), pages 1051-1058.
    16. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    17. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    3. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela & Gara, Paweł, 2016. "Carbonisation of wood residue into charcoal during low temperature process," Renewable Energy, Elsevier, vol. 85(C), pages 507-513.
    4. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    6. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    7. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    8. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    9. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Jau-Jang Lu & Wei-Hsin Chen, 2013. "Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres," Energies, MDPI, vol. 7(1), pages 1-15, December.
    11. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    12. Chen, Wei-Hsin & Huang, Ming-Yueh & Chang, Jo-Shu & Chen, Chun-Yen, 2015. "Torrefaction operation and optimization of microalga residue for energy densification and utilization," Applied Energy, Elsevier, vol. 154(C), pages 622-630.
    13. Li, Shu-Xian & Zou, Jin-Ying & Li, Ming-Fei & Wu, Xiao-Fei & Bian, Jing & Xue, Zhi-Min, 2017. "Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction," Energy, Elsevier, vol. 124(C), pages 321-329.
    14. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    15. Chen, Wei-Hsin & Lu, Ke-Miao & Lee, Wen-Jhy & Liu, Shih-Hsien & Lin, Ta-Chang, 2014. "Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass," Applied Energy, Elsevier, vol. 114(C), pages 104-113.
    16. Shih-Wei Yen & Wei-Hsin Chen & Jo-Shu Chang & Chun-Fong Eng & Salman Raza Naqvi & Pau Loke Show, 2021. "Torrefaction Thermogravimetric Analysis and Kinetics of Sorghum Distilled Residue for Sustainable Fuel Production," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    17. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    18. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    19. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    20. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:829-835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.