IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v70y2014icp68-78.html
   My bibliography  Save this article

Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed

Author

Listed:
  • Berrueco, C.
  • Recari, J.
  • Güell, B. Matas
  • Alamo, G. del

Abstract

This work reports experimental results concerning the influence of torrefaction level and pressure on product yields and composition during fluidized bed O2/steam gasification of two different raw biomasses. The results show an increase in gas yield with pressure and torrefaction level for both types of biomass considered. Increasing pressure caused the produced gas composition to shift towards higher CH4 and CO2 content, while H2 and CO levels decreased. The effect of the type of original biomass on gas composition was limited, and became less relevant as pressure and torrefaction level increased. The analysis of the tars produced during gasification also revealed that higher pressures led to the increase of tar yields. On the other hand, torrefaction level presented the opposite effect, with lower tar yields and lighter molecular weight distribution of tars as torrefaction level increased. Since torrefaction is being considered as a promising pretreatment technique for upgrading biomass to a higher quality solid fuel more suitable for the integration of gasification into biofuels production, the results from this study are relevant for evaluating the influence of the level of torrefaction on the performance of gasification under typical operating conditions in practical applications.

Suggested Citation

  • Berrueco, C. & Recari, J. & Güell, B. Matas & Alamo, G. del, 2014. "Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed," Energy, Elsevier, vol. 70(C), pages 68-78.
  • Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:68-78
    DOI: 10.1016/j.energy.2014.03.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400351X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    2. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.
    3. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    4. Escobar, José C. & Lora, Electo S. & Venturini, Osvaldo J. & Yáñez, Edgar E. & Castillo, Edgar F. & Almazan, Oscar, 2009. "Biofuels: Environment, technology and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1275-1287, August.
    5. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2007. "From coal to biomass gasification: Comparison of thermodynamic efficiency," Energy, Elsevier, vol. 32(7), pages 1248-1259.
    6. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    7. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    8. Park, Sang-Woo & Jang, Cheol-Hyeon & Baek, Kyung-Ryul & Yang, Jae-Kyung, 2012. "Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products," Energy, Elsevier, vol. 45(1), pages 676-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seok-Jun Kim & Kwang-Cheol Oh & Sun-Yong Park & Young-Min Ju & La-Hoon Cho & Chung-Geon Lee & Min-Jun Kim & In-Seon Jeong & Dae-Hyun Kim, 2021. "Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction," Energies, MDPI, vol. 14(19), pages 1-14, September.
    2. Zhang, Qian & Li, Qingfeng & Zhang, Linxian & Yu, Zhongliang & Jing, Xuliang & Wang, Zhiqing & Fang, Yitian & Huang, Wei, 2017. "Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt," Energy, Elsevier, vol. 134(C), pages 301-310.
    3. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    4. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    5. Salaudeen, Shakirudeen A. & Acharya, Bishnu & Dutta, Animesh, 2021. "Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes," Renewable Energy, Elsevier, vol. 171(C), pages 582-591.
    6. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    7. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    8. Recari, J. & Berrueco, C. & Puy, N. & Alier, S. & Bartrolí, J. & Farriol, X., 2017. "Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes," Applied Energy, Elsevier, vol. 203(C), pages 177-188.
    9. Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Rodriguez-Alejandro, David Aaron, 2016. "Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods," Energy, Elsevier, vol. 95(C), pages 187-199.
    10. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    3. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    4. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    5. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    6. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    7. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    8. Gunarathne, Duleeka Sandamali & Mueller, Andreas & Fleck, Sabine & Kolb, Thomas & Chmielewski, Jan Karol & Yang, Weihong & Blasiak, Wlodzimierz, 2014. "Gasification characteristics of steam exploded biomass in an updraft pilot scale gasifier," Energy, Elsevier, vol. 71(C), pages 496-506.
    9. Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
    10. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    11. Recari, J. & Berrueco, C. & Puy, N. & Alier, S. & Bartrolí, J. & Farriol, X., 2017. "Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes," Applied Energy, Elsevier, vol. 203(C), pages 177-188.
    12. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    14. Nobre, Catarina & Longo, Andrei & Vilarinho, Cândida & Gonçalves, Margarida, 2020. "Gasification of pellets produced from blends of biomass wastes and refuse derived fuel chars," Renewable Energy, Elsevier, vol. 154(C), pages 1294-1303.
    15. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    16. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    17. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    18. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    19. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    20. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:70:y:2014:i:c:p:68-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.