IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4609-d294208.html
   My bibliography  Save this article

The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing

Author

Listed:
  • Arkadiusz Dyjakon

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Tomasz Noszczyk

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Martyna Smędzik

    (Student Science Association BioEnergy, Faculty of Environmental Science and Technology, Wroclaw University of Environmental and Life Sciences, 50-363 Wroclaw, Poland)

Abstract

The annual potential of waste biomass production from food processing in Europe is 16.9 million tonnes. Unfortunately, most of these organic wastes are utilized without the energy gain, mainly due to the high moisture content and the ability to the fast rotting and decomposition. One of the options to increase its value in terms of energy applications is to valorize its properties. Torrefaction process is one of the pre-treatment technology of raw biomass that increases the quality of the fuel, especially in the context of resistance to moisture absorption. However, little is known about the influence of torrefaction temperature on the degree of valorization of some specific waste biomass. The aim of this paper was to analyze the influence of the temperature of the torrefaction on the hydrophobic properties of waste biomass, such as black currant pomace, apple pomace, orange peels, walnut shells, and pumpkin seeds. The torrefaction process was carried out at temperatures of 200 °C, 220 °C, 240 °C, 260 °C, 280 °C, and 300 °C. The hydrophobic properties were analyzed using the water drop penetration time (WDPT) test. The torrefied waste biomass was compared with the raw material dried at 105 °C. The obtained results revealed that subjecting the biomass to the torrefaction process improved its hydrophobic properties. Biomass samples changed their hydrophobic properties from hydrophilic to extremely hydrophobic depending on the temperature of the process. Apple pomace was the most hydrophilic sample; its water drop penetration was under 60 s. Black currant and apple pomaces reached extremely hydrophobic properties at a temperature of 300 °C, only. In the case of orange peels, walnut shells, and pumpkin seeds, already at the temperature of 220 °C, the samples were characterized by severely hydrophobic properties with a penetration time over 1000 s. At the temperature of 260 °C, orange peels, walnut shells, and pumpkin seeds reached extremely hydrophobic properties. Furthermore, in most cases, the increase of torrefaction temperature improved the resistance to moisture absorption, which is probably related to the removal of hydroxyl groups and structural changes occurring during this thermal process.

Suggested Citation

  • Arkadiusz Dyjakon & Tomasz Noszczyk & Martyna Smędzik, 2019. "The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing," Energies, MDPI, vol. 12(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4609-:d:294208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Álvarez, Ana & Nogueiro, Dositeo & Pizarro, Consuelo & Matos, María & Bueno, Julio L., 2018. "Non-oxidative torrefaction of biomass to enhance its fuel properties," Energy, Elsevier, vol. 158(C), pages 1-8.
    2. Johanna Gaitán-Álvarez & Róger Moya & Allen Puente-Urbina & Ana Rodriguez-Zúñiga, 2018. "Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    5. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    6. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    7. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    8. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    9. Wang, Shurong & Dai, Gongxin & Ru, Bin & Zhao, Yuan & Wang, Xiaoliu & Xiao, Gang & Luo, Zhongyang, 2017. "Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose," Energy, Elsevier, vol. 120(C), pages 864-871.
    10. Marcin Bajcar & Grzegorz Zaguła & Bogdan Saletnik & Maria Tarapatskyy & Czesław Puchalski, 2018. "Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass," Energies, MDPI, vol. 11(11), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Arkadiusz Dyjakon & Tomasz Noszczyk & Agata Mostek, 2021. "Mechanical Durability and Grindability of Pellets after Torrefaction Process," Energies, MDPI, vol. 14(20), pages 1-16, October.
    3. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    4. Jan Drofenik & Danijela Urbancl & Darko Goričanec & Zdravko Kravanja & Zorka Novak Pintarič, 2023. "Food Waste to Energy through Innovative Coupling of CHP and Heat Pump," Energies, MDPI, vol. 16(8), pages 1-18, April.
    5. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    6. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk & Łukasz Sobol & Dominika Misiakiewicz, 2021. "Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    8. Simone Bergonzoli & Alessandro Suardi & Negar Rezaie & Vincenzo Alfano & Luigi Pari, 2020. "An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection," Energies, MDPI, vol. 13(5), pages 1-15, March.
    9. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    10. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    4. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    7. Brojolall, Neeha & Surroop, Dinesh, 2022. "Improving fuel characteristics through torrefaction," Energy, Elsevier, vol. 246(C).
    8. Arkadiusz Dyjakon & Tomasz Noszczyk & Łukasz Sobol & Dominika Misiakiewicz, 2021. "Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    9. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    10. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    11. Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
    12. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    13. Helder Filipe dos Santos Viana & Abel Martins Rodrigues & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    14. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    15. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    16. Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
    17. Vincent, Shubha Shalini & Mahinpey, Nader & Aqsha, Aqsha, 2014. "Mass transfer studies during CO2 gasification of torrefied and pyrolyzed chars," Energy, Elsevier, vol. 67(C), pages 319-327.
    18. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    19. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    20. Grigiante, M. & Brighenti, M. & Antolini, D., 2016. "A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods," Renewable Energy, Elsevier, vol. 99(C), pages 1318-1326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4609-:d:294208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.