IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p4020-d588181.html
   My bibliography  Save this article

Study on the Convective Heat Transfer and Fluid Flow of Mini-Channel with High Aspect Ratio of Neutron Production Target

Author

Listed:
  • Peng Sun

    (School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
    Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
    Spallation Neutron Source Science Center, Dongguan 523803, China)

  • Yiping Lu

    (School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Jianfei Tong

    (Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
    Spallation Neutron Source Science Center, Dongguan 523803, China
    School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Youlian Lu

    (Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
    Spallation Neutron Source Science Center, Dongguan 523803, China)

  • Tianjiao Liang

    (Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
    Spallation Neutron Source Science Center, Dongguan 523803, China)

  • Lingbo Zhu

    (School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
    Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
    Spallation Neutron Source Science Center, Dongguan 523803, China)

Abstract

In order to provide a theoretical basis for the thermal design of the neutron production target, flow and heat transfer characteristics are studied by using numerical simulations and experiments. A rectangular mini-channel experimental model consistent with the geometric shape of the heat dissipation structure of neutron production target was established, in which the aspect ratio and gap thickness of the test channel were 53.8:1 and 1.3 mm, respectively. The experimental results indicate that the critical Re of the mini-channel is between 3500 and 4000, and when Re reaches 21,000, Nu can reach 160. The simulation results are in good agreement with the experimental data, and the numerical simulation method can be used for the variable structure optimization design of the target in the later stage. The relationship between the flow pressure drop of the target mini-channel and the aspect ratio and Re is obtained by numerical simulation. The maximum deviation between the correlation and the experimental value is 6%.

Suggested Citation

  • Peng Sun & Yiping Lu & Jianfei Tong & Youlian Lu & Tianjiao Liang & Lingbo Zhu, 2021. "Study on the Convective Heat Transfer and Fluid Flow of Mini-Channel with High Aspect Ratio of Neutron Production Target," Energies, MDPI, vol. 14(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4020-:d:588181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/4020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/4020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiuli Liu & Hua Chen & Xiaolin Wang & Gholamreza Kefayati, 2020. "Study on Surface Condensate Water Removal and Heat Transfer Performance of a Minichannel Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-17, March.
    2. Wei Zheng & Jianjun Sun & Chenbo Ma & Qiuping Yu & Yuyan Zhang & Tao Niu, 2021. "Numerical Study of Fluid Flow and Heat Transfer Characteristics in a Cone-Column Combined Heat Sink," Energies, MDPI, vol. 14(6), pages 1-17, March.
    3. Sohel Murshed, S.M. & Nieto de Castro, C.A., 2017. "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 821-833.
    4. Daniel Worwood & James Marco & Quirin Kellner & Elham Hosseinzadeh & Ryan McGlen & David Mullen & Kevin Lynn & David Greenwood, 2019. "Experimental Analysis of a Novel Cooling Material for Large Format Automotive Lithium-Ion Cells," Energies, MDPI, vol. 12(7), pages 1-32, April.
    5. Dominika Babička Fialová & Zdeněk Jegla, 2021. "Experimentally Verified Flow Distribution Model for a Composite Modelling System," Energies, MDPI, vol. 14(6), pages 1-24, March.
    6. Muhsin Kilic & Mehmet Aktas & Gokhan Sevilgen, 2020. "Thermal Assessment of Laminar Flow Liquid Cooling Blocks for LED Circuit Boards Used in Automotive Headlight Assemblies," Energies, MDPI, vol. 13(5), pages 1-19, March.
    7. Piotr Bogusław Jasiński & Michał Jan Kowalczyk & Artur Romaniak & Bartosz Warwas & Damian Obidowski & Artur Gutkowski, 2021. "Investigation of Thermal-Flow Characteristics of Pipes with Helical Micro-Fins of Variable Height," Energies, MDPI, vol. 14(8), pages 1-18, April.
    8. Shilin Li & Zhongchao Zhao & Yanrui Zhang & Haijia Xu & Weiqin Zeng, 2020. "Experimental and Numerical Analysis of Condensation Heat Transfer and Pressure Drop of Refrigerant R22 in Minichannels of a Printed Circuit Heat Exchanger," Energies, MDPI, vol. 13(24), pages 1-19, December.
    9. Andrea Allio & Rosa Difonzo & Alberto Leggieri & François Legrand & Rodolphe Marchesin & Laura Savoldi, 2020. "Test and Modeling of the Hydraulic Performance of High-Efficiency Cooling Configurations for Gyrotron Resonance Cavities," Energies, MDPI, vol. 13(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Likun Ai & Yiping Lu & Jiade Han & Wenxu Suo, 2023. "Simulation of the Temperature of a Shielding Induction Motor of the Nuclear Main Pump under Different Turbulence Models," Energies, MDPI, vol. 16(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    2. Wang, Ji-Xiang & Li, Yun-Ze & Li, Jia-Xin & Li, Chao & Xiong, Kai & Ning, Xian-Wen, 2018. "Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector," Energy, Elsevier, vol. 158(C), pages 512-523.
    3. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    4. Laura Savoldi & Konstantinos A. Avramidis & Ferran Albajar & Stefano Alberti & Alberto Leggieri & Francisco Sanchez, 2021. "A Validation Roadmap of Multi-Physics Simulators of the Resonator of MW-Class CW Gyrotrons for Fusion Applications," Energies, MDPI, vol. 14(23), pages 1-15, December.
    5. Chongmao Mo & Guoqing Zhang & Xiaoqing Yang & Xihong Wu & Xinxi Li, 2022. "A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling," Energies, MDPI, vol. 15(16), pages 1-15, August.
    6. Magdalena Piasecka, 2023. "Heat and Mass Transfer Issues in Mini-Gaps," Energies, MDPI, vol. 16(16), pages 1-6, August.
    7. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    8. Imran Zahid & Muhammad Farooq & Muhammad Farhan & Muhammad Usman & Adnan Qamar & Muhammad Imran & Mejdal A. Alqahtani & Saqib Anwar & Muhammad Sultan & Muhammad Yasar Javaid, 2022. "Thermal Performance Analysis of Various Heat Sinks Based on Alumina NePCM for Passive Cooling of Electronic Components: An Experimental Study," Energies, MDPI, vol. 15(22), pages 1-16, November.
    9. Li, Zongtao & Wu, Yuxuan & Zhuang, Baoshan & Zhao, Xuezhi & Tang, Yong & Ding, Xinrui & Chen, Kaihang, 2017. "Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity," Applied Energy, Elsevier, vol. 206(C), pages 1147-1157.
    10. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Alexander Igolnikov & Pavel Skripov, 2023. "Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture," Energies, MDPI, vol. 16(5), pages 1-15, February.
    12. Chuan-Wei Zhang & Shang-Rui Chen & Huai-Bin Gao & Ke-Jun Xu & Zhan Xia & Shuai-Tian Li, 2019. "Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack," Energies, MDPI, vol. 12(10), pages 1-14, May.
    13. Eloy Hontoria & Alejandro López-Belchí & Nolberto Munier & Francisco Vera-García, 2021. "A MCDM Methodology to Determine the Most Critical Variables in the Pressure Drop and Heat Transfer in Minichannels," Energies, MDPI, vol. 14(8), pages 1-13, April.
    14. Muhsin Kılıç & Sevgül Gamsız & Zehra Nihan Alınca, 2023. "Comparative Evaluation and Multi-Objective Optimization of Cold Plate Designed for the Lithium-Ion Battery Pack of an Electrical Pickup by Using Taguchi–Grey Relational Analysis," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    15. Yongle Tang & Xuewei Zhang & Zhichun Liu, 2023. "Experimental Study on the Thermal Performance of Flat Loop Heat Pipe Applied in Data Center Cooling," Energies, MDPI, vol. 16(12), pages 1-21, June.
    16. Chuanwei Zhang & Zhan Xia & Bin Wang & Huaibin Gao & Shangrui Chen & Shouchao Zong & Kunxin Luo, 2020. "A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler," Energies, MDPI, vol. 13(4), pages 1-15, February.
    17. Ebadi, Hossein & Cammi, Antonio & Difonzo, Rosa & Rodríguez, José & Savoldi, Laura, 2023. "Experimental investigation on an air tubular absorber enhanced with Raschig Rings porous medium in a solar furnace," Applied Energy, Elsevier, vol. 342(C).
    18. Liangyu Wu & Yingying Chen & Suchen Wu & Mengchen Zhang & Weibo Yang & Fangping Tang, 2018. "Visualization Study of Startup Modes and Operating States of a Flat Two-Phase Micro Thermosyphon," Energies, MDPI, vol. 11(9), pages 1-15, August.
    19. Piotr Bogusław Jasiński, 2021. "Numerical Study of Heat Transfer Intensification in a Circular Tube Using a Thin, Radiation-Absorbing Insert. Part 2: Thermal Performance," Energies, MDPI, vol. 14(15), pages 1-18, July.
    20. Xiongfei Zheng & Xue Hu & Lixin Zhang & Xinwang Zhang & Feng Chen & Chunliang Mai, 2022. "Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates," Energies, MDPI, vol. 15(9), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4020-:d:588181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.