IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8416-d969136.html
   My bibliography  Save this article

Thermal Performance Analysis of Various Heat Sinks Based on Alumina NePCM for Passive Cooling of Electronic Components: An Experimental Study

Author

Listed:
  • Imran Zahid

    (Department of Mechanical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
    Department of Mechanical Engineering and Technology, Government College University, Faisalabad 38000, Pakistan)

  • Muhammad Farooq

    (Department of Mechanical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan)

  • Muhammad Farhan

    (Department of Mechanical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan)

  • Muhammad Usman

    (Department of Mechanical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan)

  • Adnan Qamar

    (Department of Mechanical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan)

  • Muhammad Imran

    (Department of Mechanical, Biomedical and Design Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK)

  • Mejdal A. Alqahtani

    (Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Saqib Anwar

    (Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Muhammad Sultan

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Muhammad Yasar Javaid

    (Department of Mechanical Engineering and Technology, Government College University, Faisalabad 38000, Pakistan)

Abstract

In the modern digital world, electronic devices are being widely employed for various applications where thermal performance represents a significant technical challenge due to continued miniaturization, high heat generated in the system, and non-uniform high-temperature causing failure. Phase change materials (PCMs) owing to the immense heat of fusion are primarily considered for thermal management, but their insulating properties hedge their applications in electronics cooling. Nano-enhanced phase change materials (NePCMs) have the ability to improve the thermal conductivity of PCM, decrease system temperature and escalate the operating time of devices. Accordingly, the current study focused on the experimental investigations for the thermal performance of three heat sinks (HS) with different configurations such as a simple heat sink (SHS), a square pin-fins heat sink (S pf HS), and Cu foam integrated heat sink (Cu fm HS) with various alumina nanoparticles mass concentrations (0.15, 0.20 and 0.25 wt%) incorporated in PCM (RT-54HC) and at heat flux (0.98–2.94 kW/m 2 ). All HSs reduced the base temperature with the insertion of NePCM compared to the empty SHS. The experimental results identified that the thermal performance of Cu fm HS was found to be superior in reducing base temperature and enhancing working time at two different setpoint temperatures (SPTs). The maximum drop in base temperature was 36.95%, and a 288% maximum working time enhancement was observed for Cu fm HS. Therefore, NePCMs are highly recommended for the thermal management of the electronic cooling system.

Suggested Citation

  • Imran Zahid & Muhammad Farooq & Muhammad Farhan & Muhammad Usman & Adnan Qamar & Muhammad Imran & Mejdal A. Alqahtani & Saqib Anwar & Muhammad Sultan & Muhammad Yasar Javaid, 2022. "Thermal Performance Analysis of Various Heat Sinks Based on Alumina NePCM for Passive Cooling of Electronic Components: An Experimental Study," Energies, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8416-:d:969136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Liang & Xing, Yuming & Liu, Xin, 2020. "Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material," Renewable Energy, Elsevier, vol. 146(C), pages 1578-1587.
    2. Abdul Sattar & Muhammad Farooq & Muhammad Amjad & Muhammad A. Saeed & Saad Nawaz & M.A. Mujtaba & Saqib Anwar & Ahmed M. El-Sherbeeny & Manzoore Elahi M. Soudagar & Enio P. Bandarra Filho & Qasim Ali , 2020. "Performance Evaluation of a Direct Absorption Collector for Solar Thermal Energy Conversion," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Kazemi, M. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Improvement of longitudinal fins configuration in latent heat storage systems," Renewable Energy, Elsevier, vol. 116(PA), pages 447-457.
    4. Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
    5. Kassianne Tofani & Saeed Tiari, 2021. "Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review," Energies, MDPI, vol. 14(13), pages 1-34, June.
    6. Sohel Murshed, S.M. & Nieto de Castro, C.A., 2017. "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 821-833.
    7. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    2. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. Shilei Lv & Jiawen Zhu & Ran Wang, 2023. "Experimental Research on a Solar Energy Phase Change Heat Storage Heating System Applied in the Rural Area," Sustainability, MDPI, vol. 15(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
    4. Zuo, Hongyang & Wu, Mingyang & Zeng, Kuo & Zhou, Yuan & Kong, Jiayue & Qiu, Yi & Lin, Meng & Flamant, Gilles, 2021. "Numerical investigation and optimal design of partially filled sectorial metal foam configuration in horizontal latent heat storage unit," Energy, Elsevier, vol. 237(C).
    5. Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    6. Pu, Liang & Zhang, Shengqi & Xu, Lingling & Ma, Zhenjun & Wang, Xinke, 2021. "Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam," Renewable Energy, Elsevier, vol. 174(C), pages 573-589.
    7. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Zheng, Zhang-Jing & Yang, Chao & Xu, Yang & Cai, Xiao, 2021. "Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity," Renewable Energy, Elsevier, vol. 172(C), pages 802-815.
    9. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
    10. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    11. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    12. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    13. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    15. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    16. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    17. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    18. Liangyu Wu & Yingying Chen & Suchen Wu & Mengchen Zhang & Weibo Yang & Fangping Tang, 2018. "Visualization Study of Startup Modes and Operating States of a Flat Two-Phase Micro Thermosyphon," Energies, MDPI, vol. 11(9), pages 1-15, August.
    19. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    20. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8416-:d:969136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.