IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4736-d1743000.html
   My bibliography  Save this article

Investigation of the Effectiveness of a Compact Heat Exchanger with Metal Foam in Supercritical Carbon Dioxide Cooling

Author

Listed:
  • Roman Dyga

    (Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, Mikolajczyka 5, 45-271 Opole, Poland)

Abstract

Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described work was to evaluate the potential for improving the performance of printed circuit heat exchangers by incorporating open-cell metal foam as the heat exchanger packing material. The evaluation was conducted based on the results of numerical simulation of supercritical carbon dioxide cooling flowing through printed circuit heat exchanger channels filled with 40 PPI copper foam with 90% porosity. A unit periodic region of the heat exchanger comprising two adjacent straight channels for cold and hot fluid was analyzed. The channels had a semicircular cross-section and a length of 200 mm. Studies were conducted for three different channel diameters—2, 3, and 4 mm. The range of mass flux variations for cold fluid (water) and hot fluid (sCO 2 ) were 300–1500 kg/(m 2 ·s) and 200–800 kg/(m 2 ·s), respectively. It was found that in channels filled with metal foam, carbon dioxide cooling is characterized by a higher heat transfer coefficient than in channels without metal foam. In channels of the same diameter, heat flux was 33–63% higher in favor of the channel with metal foam. Thermal effectiveness of the heat exchanger with metal foam can be up to 20% higher than in the case of a heat exchanger without foam. Despite very high pressure drop through channels filled with metal foam, thermal–hydraulic performance can also be higher—even 4.7 in the case of a 2 mm channel. However, both these parameters depend on flow conditions and channel diameter, and under certain conditions may be lower than in a heat exchanger without metal foam. The results of the presented work indicate a new direction for the development of PCHE heat exchangers and confirm that the use of metal foams in the construction of PCHE heat exchangers can contribute to increasing the efficiency and effectiveness of the processes in which they are used.

Suggested Citation

  • Roman Dyga, 2025. "Investigation of the Effectiveness of a Compact Heat Exchanger with Metal Foam in Supercritical Carbon Dioxide Cooling," Energies, MDPI, vol. 18(17), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4736-:d:1743000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Dyga & Sebastian Brol, 2021. "Pressure Drops in Two-Phase Gas–Liquid Flow through Channels Filled with Open-Cell Metal Foams," Energies, MDPI, vol. 14(9), pages 1-26, April.
    2. Ma, Ting & Zhang, Pan & Deng, Tianrui & Ke, Hanbing & Lin, Yuansheng & Wang, Qiuwang, 2021. "Thermal-hydraulic characteristics of printed circuit heat exchanger used for floating natural gas liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Fu, Xiangyu & Zhang, Rongmin & Shi, Lei & Wang, Yue & Li, Qian & Cai, Weihua, 2024. "Micro segment analysis and machine learning prediction for thermal-hydraulic parameters of propane condensation flow in a PCHE straight channel," Energy, Elsevier, vol. 310(C).
    4. Kim, Dae Yeon & Sung, Tae Hong & Kim, Kyung Chun, 2016. "Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system," Energy, Elsevier, vol. 105(C), pages 57-69.
    5. Jadhav, Prakash H. & Gnanasekaran, N. & Mobedi, Moghtada, 2023. "Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger," Energy, Elsevier, vol. 263(PA).
    6. Shilin Li & Zhongchao Zhao & Yanrui Zhang & Haijia Xu & Weiqin Zeng, 2020. "Experimental and Numerical Analysis of Condensation Heat Transfer and Pressure Drop of Refrigerant R22 in Minichannels of a Printed Circuit Heat Exchanger," Energies, MDPI, vol. 13(24), pages 1-19, December.
    7. Han, Zengxiao & Guo, Jiangfeng & Huai, Xiulan, 2023. "Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Xiangyu & Zhang, Rongmin & Shi, Lei & Wang, Yue & Li, Qian & Cai, Weihua, 2024. "Micro segment analysis and machine learning prediction for thermal-hydraulic parameters of propane condensation flow in a PCHE straight channel," Energy, Elsevier, vol. 310(C).
    2. Li, Qian & Zhan, Qi & Yu, Shipeng & Sun, Jianchuang & Cai, Weihua, 2023. "Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods," Energy, Elsevier, vol. 282(C).
    3. Gordon, Jeffrey M. & Moses, Gilad & Katz, Eugene A., 2021. "Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas," Energy, Elsevier, vol. 214(C).
    4. Li, Zhen & Lu, Daogang & Wang, Zhichao & Cao, Qiong, 2023. "Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack," Energy, Elsevier, vol. 282(C).
    5. Jerzy Hapanowicz & Adriana Szydłowska & Jacek Wydrych, 2022. "Experimental and Prenemilary Numerical Evaluation of Pressure Drops under the Conditions of the Stratified Gas-Liquid Flow in a Horizontal Pipe Filled with Metal Foam," Energies, MDPI, vol. 15(23), pages 1-22, November.
    6. Rawal Diganjit & N. Gnanasekaran & Moghtada Mobedi, 2022. "Numerical Study for Enhancement of Heat Transfer Using Discrete Metal Foam with Varying Thickness and Porosity in Solar Air Heater by LTNE Method," Energies, MDPI, vol. 15(23), pages 1-28, November.
    7. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).
    8. Li, Zhen & Lu, Daogang & Lin, Manjiao & Cao, Qiong, 2024. "Investigation of the thermal-hydraulic characteristics of SCO2 in a modified hybrid airfoil channel," Energy, Elsevier, vol. 308(C).
    9. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.
    10. Ma, Yangfan & Liu, Dechao & Wang, Jinghan & Zeng, Min & Wang, Qiuwang & Ma, Ting, 2025. "Thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    11. Wu, Zhihong & Huang, Zexuan & Yang, Jian & Gkogkos, Georgios & Wang, Qiuwang, 2024. "Numerical investigation of methane steam reforming in the packed bed installed with the fin-metal foam," Energy, Elsevier, vol. 307(C).
    12. Wang, He & Lu, Daogang & Xu, Chao & Cao, Qiong & Li, Zhen & Fan, Cheng & Lin, Manjiao, 2025. "Study on flow and heat transfer characteristics of helium-xenon mixtures in airfoil-fin PCHEs with different cross-sectional parameters," Energy, Elsevier, vol. 325(C).
    13. Zheng, Dan & Du, Jianqiang & Wang, Wei & Klemeš, Jiří Jaromír & Wang, Jin & Sundén, Bengt, 2022. "Analysis of thermal efficiency of a corrugated double-tube heat exchanger with nanofluids," Energy, Elsevier, vol. 256(C).
    14. Aidar Khairullin & Aigul Haibullina & Alex Sinyavin & Denis Balzamov & Vladimir Ilyin & Liliya Khairullina & Veronika Bronskaya, 2022. "Heat Transfer in 3D Laguerre–Voronoi Open-Cell Foams under Pulsating Flow," Energies, MDPI, vol. 15(22), pages 1-26, November.
    15. Qiao, Jianxin & Chen, Shuangqing & Liu, Shenghui & Fei, Junjie & Zhu, Xiaoliang & Liu, Minyun & Gong, Houjun & Zheng, Ruohan & Huang, Yanping, 2024. "Study on the prediction and optimization of flow mal-distribution in printed circuit heat exchangers based on machine learning," Energy, Elsevier, vol. 313(C).
    16. Khoshvaght-Aliabadi, M. & Ghodrati, P. & Rashidi, M.M. & Kang, Y.T., 2024. "Structural analysis and optimization of flattened tube gas cooler for transcritical CO2 heat pump systems," Energy, Elsevier, vol. 307(C).
    17. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "Performance evaluation of non-uniform twisted designs in precooler of supercritical CO2 power cycle," Energy, Elsevier, vol. 292(C).
    18. Rashidi, Saman & Kashefi, Mohammad Hossein & Kim, Kyung Chun & Samimi-Abianeh, Omid, 2019. "Potentials of porous materials for energy management in heat exchangers – A comprehensive review," Applied Energy, Elsevier, vol. 243(C), pages 206-232.
    19. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants' supercritical CO2 cycle," Energy, Elsevier, vol. 292(C).
    20. Zhang, Gangan & Li, Wei & Yang, Desong & Chen, Zengchao & Markides, Christos N. & Ji, Wentao & Tao, Wenquan, 2025. "Integrated machine learning model for condensation flow heat transfer in smooth and enhanced tubes," Energy, Elsevier, vol. 317(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4736-:d:1743000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.