IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8952-d985285.html
   My bibliography  Save this article

Numerical Study for Enhancement of Heat Transfer Using Discrete Metal Foam with Varying Thickness and Porosity in Solar Air Heater by LTNE Method

Author

Listed:
  • Rawal Diganjit

    (Department of Mechanical Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore 575025, India)

  • N. Gnanasekaran

    (Department of Mechanical Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore 575025, India)

  • Moghtada Mobedi

    (Mechanical Engineering Department, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi 432-8561, Japan)

Abstract

A two-dimensional rectangular domain is considered with a discrete arrangement at equal distances from copper metal foam in a solar air heater (SAH). The local thermal non-equilibrium model is used for the analysis of heat transfer in a single-pass rectangular channel of SAH for different mass flow rates ranging from 0.03 to 0.05 kg/s at 850 W/m 2 heat flux. Three different pores per inch (PPI) and porosities of copper metal foam with three different discrete thicknesses at equal distances are studied numerically. This paper evaluates the performance of SAH with 10 PPI 0.8769 porosity, 20 PPI 0.8567 porosity, and 30 PPI 0.92 porosity at 22 mm, 44 mm, and 88 mm thicknesses. The Nusselt number for 22 mm, 44 mm, and 88 mm thicknesses is 157.64%, 183.31%, and 218.60%, respectively, higher than the empty channel. The performance factor for 22 mm thick metal foam is 5.02% and 16.61% higher than for 44 mm and 88 mm thick metal foam, respectively. Hence, it is found that metal foam can be an excellent option for heat transfer enhancement in SAH, if it is designed properly.

Suggested Citation

  • Rawal Diganjit & N. Gnanasekaran & Moghtada Mobedi, 2022. "Numerical Study for Enhancement of Heat Transfer Using Discrete Metal Foam with Varying Thickness and Porosity in Solar Air Heater by LTNE Method," Energies, MDPI, vol. 15(23), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8952-:d:985285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8952/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anirudh, K. & Dhinakaran, S., 2020. "Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks," Renewable Energy, Elsevier, vol. 145(C), pages 428-441.
    2. Trilok G & Kurma Eshwar Sai Srinivas & Devika Harikrishnan & Gnanasekaran N & Moghtada Mobedi, 2022. "Correlations and Numerical Modeling of Stacked Woven Wire-Mesh Porous Media for Heat Exchange Applications," Energies, MDPI, vol. 15(7), pages 1-25, March.
    3. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    4. Jadhav, Prakash H. & Gnanasekaran, N. & Mobedi, Moghtada, 2023. "Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger," Energy, Elsevier, vol. 263(PA).
    5. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
    6. Singh, Satyender, 2020. "Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater," Renewable Energy, Elsevier, vol. 145(C), pages 1361-1387.
    7. Trilok G & N Gnanasekaran & Moghtada Mobedi, 2021. "Various Trade-Off Scenarios in Thermo-Hydrodynamic Performance of Metal Foams Due to Variations in Their Thickness and Structural Conditions," Energies, MDPI, vol. 14(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.
    2. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    3. Anirudh, K. & Dhinakaran, S., 2020. "Numerical study on performance improvement of a flat-plate solar collector filled with porous foam," Renewable Energy, Elsevier, vol. 147(P1), pages 1704-1717.
    4. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    5. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    6. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    7. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    8. Hajabdollahi, Hassan, 2021. "Thermoeconomic assessment of integrated solar flat plat collector with cross flow heat exchanger as solar air heater using numerical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 491-504.
    9. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    10. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Babazadeh, Houman, 2021. "Performance of solar collector with turbulator involving nanomaterial turbulent regime," Renewable Energy, Elsevier, vol. 163(C), pages 1222-1237.
    12. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    13. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    14. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    15. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    16. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    17. Madhwesh Nagaraj & Manu Krishna Reddy & Arun Kumar Honnesara Sheshadri & Kota Vasudeva Karanth, 2022. "Numerical Analysis of an Aerofoil Fin Integrated Double Pass Solar Air Heater for Thermal Performance Enhancement," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    18. Marina Tselepi & Costas Prouskas & Dimitrios G. Papageorgiou & Isaac. E. Lagaris & Georgios A. Evangelakis, 2022. "Graphene-Based Phase Change Composite Nano-Materials for Thermal Storage Applications," Energies, MDPI, vol. 15(3), pages 1-12, February.
    19. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    20. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8952-:d:985285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.