IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038052.html
   My bibliography  Save this article

Experimental and mechanism analysis of a tandem solar thermal system with staged water level reduction

Author

Listed:
  • Zhai, Chaoqun
  • Sun, Zhilin
  • Yang, Yang

Abstract

Non-concentrating collectors are essential heat-collecting devices in solar desalination systems but typically face challenges such as low efficiency and susceptibility to corrosion. This work introduces a novel tandem solar thermal system with staged water level reduction and conducts experiments under various outdoor weather conditions and different startup strategies, along with corresponding mechanistic analyses. The results revealed that the system's thermal performance is optimal under the 8 °C control, with a maximum thermal efficiency reaching 82.16 %. The maximum temperature rise ratio between this system and a single collector under the same operating conditions reached 3.391. Moreover, the system's thermodynamic process is divided into two stages based on flow and phase changes, with a transition point at 67 °C. This novel system extends the application of non-concentrating collectors into medium-temperature domains, offering a cost-effective solution with minimal secondary energy dependence and fewer energy conversion steps, making it particularly suitable as a heat collection module for desalination systems in arid and semi-arid regions.

Suggested Citation

  • Zhai, Chaoqun & Sun, Zhilin & Yang, Yang, 2024. "Experimental and mechanism analysis of a tandem solar thermal system with staged water level reduction," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038052
    DOI: 10.1016/j.energy.2024.134027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anirudh, K. & Dhinakaran, S., 2020. "Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks," Renewable Energy, Elsevier, vol. 145(C), pages 428-441.
    2. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Wang, Teng-yue & Zhao, Yao-hua & Diao, Yan-hua & Ren, Ru-yang & Wang, Ze-yu, 2019. "Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays," Energy, Elsevier, vol. 177(C), pages 16-28.
    4. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    5. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
    6. Zhang, Yiwei & Liu, Huizhen & Zhou, Xingfei & Hu, Ziyang & Wang, Han & Kuang, Min & Li, Jianming & Zhang, Houcheng, 2024. "A novel photo-thermal-electric hybrid system comprising evacuated U-tube solar collector and inhomogeneous thermoelectric generator toward efficient and stable operation," Energy, Elsevier, vol. 292(C).
    7. Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
    8. Hajabdollahi, Hassan & Khosravian, Mohammadreza & Shafiey Dehaj, Mohammad, 2022. "Thermo-economic modeling and optimization of a solar network using flat plate collectors," Energy, Elsevier, vol. 244(PB).
    9. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
    10. Essa, Mohamed A. & Rofaiel, Ibrahim Y. & Ahmed, Mohamed A., 2020. "Experimental and Theoretical Analysis for the Performance of Evacuated Tube Collector Integrated with Helical Finned Heat Pipes using PCM Energy Storage," Energy, Elsevier, vol. 206(C).
    11. Aref, Latif & Fallahzadeh, Rasoul & Shabanian, Seyed Reza & Hosseinzadeh, Mojtaba, 2021. "A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector," Energy, Elsevier, vol. 230(C).
    12. Zhang, Dengke & Diao, Yanhua & Wang, Zeyu & Pan, Yawen & Wang, Xinran & Zhao, Yaohua, 2024. "Thermal performance and optimization of an integrated collector–storage solar air heater based on lap joint-type flat micro-heat pipe arrays," Renewable Energy, Elsevier, vol. 228(C).
    13. Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
    14. Wang, Jianzhou & Yu, Yue & Zeng, Bo & Lu, Haiyan, 2024. "Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis," Energy, Elsevier, vol. 288(C).
    15. Essa, Mohamed A. & Asal, Manar & Saleh, Mohamed A. & Shaltout, R.E., 2021. "A comparative study of the performance of a novel helical direct flow U-Tube evacuated tube collector," Renewable Energy, Elsevier, vol. 163(C), pages 2068-2080.
    16. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    17. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    18. Anirudh, K. & Dhinakaran, S., 2020. "Numerical study on performance improvement of a flat-plate solar collector filled with porous foam," Renewable Energy, Elsevier, vol. 147(P1), pages 1704-1717.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Essa, Mohamed A. & Asal, Manar & Saleh, Mohamed A. & Shaltout, R.E., 2021. "A comparative study of the performance of a novel helical direct flow U-Tube evacuated tube collector," Renewable Energy, Elsevier, vol. 163(C), pages 2068-2080.
    2. Rawal Diganjit & N. Gnanasekaran & Moghtada Mobedi, 2022. "Numerical Study for Enhancement of Heat Transfer Using Discrete Metal Foam with Varying Thickness and Porosity in Solar Air Heater by LTNE Method," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    4. Nokhosteen, Arman & Sobhansarbandi, Sarvenaz, 2021. "Numerical modeling and experimental cross-validation of a solar thermal collector through an innovative hybrid CFD model," Renewable Energy, Elsevier, vol. 172(C), pages 918-928.
    5. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Anirudh, K. & Dhinakaran, S., 2020. "Numerical study on performance improvement of a flat-plate solar collector filled with porous foam," Renewable Energy, Elsevier, vol. 147(P1), pages 1704-1717.
    7. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    8. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
    9. Sheikholeslami, M. & Farshad, Seyyed Ali, 2021. "Investigation of solar collector system with turbulator considering hybrid nanoparticles," Renewable Energy, Elsevier, vol. 171(C), pages 1128-1158.
    10. Bhowmik, Mrinal & Muthukumar, P. & Anandalakshmi, R., 2019. "Experimental based multilayer perceptron approach for prediction of evacuated solar collector performance in humid subtropical regions," Renewable Energy, Elsevier, vol. 143(C), pages 1566-1580.
    11. Fan, Leilei & Sun, Zhilin & Wan, Wuyi & Zhang, Boran, 2024. "Improved model for thermal transmission in evacuated tubes: Effect of non-uniform heat flux and circumferential conduction," Energy, Elsevier, vol. 297(C).
    12. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
    13. Barbosa, Eloiny Guimarães & Araujo, Marcos Eduardo Viana de & Martins, Marcio Arêdes, 2025. "Heat transfer improvement for a filled-type compound parabolic solar collector with U-tube: Energetic and economic analysis," Renewable Energy, Elsevier, vol. 239(C).
    14. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    15. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.
    16. R. M. Mostafizur & M. G. Rasul & M. N. Nabi, 2021. "Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach," Energies, MDPI, vol. 14(14), pages 1-19, July.
    17. Arun Uniyal & Yogesh K. Prajapati & Lalit Ranakoti & Prabhakar Bhandari & Tej Singh & Brijesh Gangil & Shubham Sharma & Viyat Varun Upadhyay & Sayed M. Eldin, 2022. "Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs," Energies, MDPI, vol. 15(23), pages 1-25, November.
    18. Anirudh, K. & Dhinakaran, S., 2021. "Numerical analysis of the performance improvement of a flat-plate solar collector using conjugated porous blocks," Renewable Energy, Elsevier, vol. 172(C), pages 382-391.
    19. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    20. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.