IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1251-d219015.html
   My bibliography  Save this article

Experimental Analysis of a Novel Cooling Material for Large Format Automotive Lithium-Ion Cells

Author

Listed:
  • Daniel Worwood

    (WMG, University of Warwick, Coventry CV4 7AL, UK)

  • James Marco

    (WMG, University of Warwick, Coventry CV4 7AL, UK)

  • Quirin Kellner

    (WMG, University of Warwick, Coventry CV4 7AL, UK)

  • Elham Hosseinzadeh

    (WMG, University of Warwick, Coventry CV4 7AL, UK)

  • Ryan McGlen

    (AAVID Thermacore Europe, Ashington NE63, UK)

  • David Mullen

    (AAVID Thermacore Europe, Ashington NE63, UK)

  • Kevin Lynn

    (AAVID Thermacore Europe, Ashington NE63, UK)

  • David Greenwood

    (WMG, University of Warwick, Coventry CV4 7AL, UK)

Abstract

Cooling the surface of large format batteries with solid conductive plates, or fins, has an inherent advantage of reducing the number of liquid seals relative to some mini-channel cold plate designs, as liquid is not passed through the numerous individual plates directly. This may reduce the overall pack leakage risk which is of utmost importance due to safety concerns associated with the possibility of a cell short circuit and thermal runaway event. However, fin cooling comes at a cost of an increased thermal resistance which can lead to higher cell temperatures and a poorer temperature uniformity under aggressive heat generation conditions. In this paper, a novel graphite-based fin material with an in-plane thermal conductivity 5 times greater than aluminium with the same weight is presented for advanced battery cooling. The thermal performance of the fin is benchmarked against conventional copper and aluminium fins in an experimental programme cycling real 53 Ah pouch cells. The results from the extensive experimental testing indicate that the new fin can reduce both the peak measured temperature and surface temperature gradient by up to 8 °C and 5 °C respectively, when compared to aluminium fins under an aggressive electric vehicle duty-cycle.

Suggested Citation

  • Daniel Worwood & James Marco & Quirin Kellner & Elham Hosseinzadeh & Ryan McGlen & David Mullen & Kevin Lynn & David Greenwood, 2019. "Experimental Analysis of a Novel Cooling Material for Large Format Automotive Lithium-Ion Cells," Energies, MDPI, vol. 12(7), pages 1-32, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1251-:d:219015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    2. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    3. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moeed Rabiei & Ayat Gharehghani & Soheil Saeedipour & Amin Mahmoudzadeh Andwari & Juho Könnö, 2023. "Proposing a Hybrid BTMS Using a Novel Structure of a Microchannel Cold Plate and PCM," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Chongmao Mo & Guoqing Zhang & Xiaoqing Yang & Xihong Wu & Xinxi Li, 2022. "A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. Chuanwei Zhang & Zhan Xia & Bin Wang & Huaibin Gao & Shangrui Chen & Shouchao Zong & Kunxin Luo, 2020. "A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler," Energies, MDPI, vol. 13(4), pages 1-15, February.
    4. Peng Sun & Yiping Lu & Jianfei Tong & Youlian Lu & Tianjiao Liang & Lingbo Zhu, 2021. "Study on the Convective Heat Transfer and Fluid Flow of Mini-Channel with High Aspect Ratio of Neutron Production Target," Energies, MDPI, vol. 14(13), pages 1-15, July.
    5. Chuan-Wei Zhang & Shang-Rui Chen & Huai-Bin Gao & Ke-Jun Xu & Zhan Xia & Shuai-Tian Li, 2019. "Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack," Energies, MDPI, vol. 12(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    4. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    5. Anandh Ramesh Babu & Jelena Andric & Blago Minovski & Simone Sebben, 2021. "System-Level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    8. Sheng, Lei & Zhang, Hengyun & Su, Lin & Zhang, Zhendong & Zhang, Hua & Li, Kang & Fang, Yidong & Ye, Wen, 2021. "Effect analysis on thermal profile management of a cylindrical lithium-ion battery utilizing a cellular liquid cooling jacket," Energy, Elsevier, vol. 220(C).
    9. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    10. Mousavi, Sepehr & Zadehkabir, Amirhosein & Siavashi, Majid & Yang, Xiaohu, 2023. "An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials," Applied Energy, Elsevier, vol. 334(C).
    11. Mali, Vima & Saxena, Rajat & Kumar, Kundan & Kalam, Abul & Tripathi, Brijesh, 2021. "Review on battery thermal management systems for energy-efficient electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Waseem Raza & Gwang Soo Ko & Youn Cheol Park, 2020. "Induction Heater Based Battery Thermal Management System for Electric Vehicles," Energies, MDPI, vol. 13(21), pages 1-21, October.
    13. Mortazavi, Bohayra & Yang, Hongliu & Mohebbi, Farzad & Cuniberti, Gianaurelio & Rabczuk, Timon, 2017. "Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation," Applied Energy, Elsevier, vol. 202(C), pages 323-334.
    14. Ma, Yan & Mou, Hongyuan & Zhao, Haiyan, 2020. "Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method," Energy, Elsevier, vol. 201(C).
    15. Jan Kleiner & Lidiya Komsiyska & Gordon Elger & Christian Endisch, 2019. "Thermal Modelling of a Prismatic Lithium-Ion Cell in a Battery Electric Vehicle Environment: Influences of the Experimental Validation Setup," Energies, MDPI, vol. 13(1), pages 1-18, December.
    16. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    17. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    18. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Yan Wang & Qing Gao & Tianshi Zhang & Guohua Wang & Zhipeng Jiang & Yunxia Li, 2017. "Advances in Integrated Vehicle Thermal Management and Numerical Simulation," Energies, MDPI, vol. 10(10), pages 1-30, October.
    20. Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1251-:d:219015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.