IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1065-d326698.html
   My bibliography  Save this article

Study on Surface Condensate Water Removal and Heat Transfer Performance of a Minichannel Heat Exchanger

Author

Listed:
  • Xiuli Liu

    (Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin 300134, China)

  • Hua Chen

    (Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin 300134, China)

  • Xiaolin Wang

    (School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia)

  • Gholamreza Kefayati

    (School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia)

Abstract

The condensate on the surface of the minichannel heat exchanger generated during air cooling substantially reduces the heat transfer performance as it works as an evaporator in the air-conditioning system. This has received much attention in scientific communities. In this paper, the effect of operating parameters on the heat transfer performance of a minichannel heat exchanger (MHE) is investigated under an evaporator working condition. An experimental MHE test system is developed for this purpose, and extensive experimental studies are conducted under a wide range of working conditions using the water-cooling method. The inlet air temperature shows a large effect on the overall heat transfer coefficient, while the inlet air relative humidity shows a large effect on the condensate aggregation rate. The airside heat transfer coefficient increases from 66 to 81 W/(m 2 ·K) when the inlet air temperature increases from 30 to 35 °C. While the condensate aggregation rate on the MHE surface increases by up to 1.8 times when the relative humidity increases from 50% to 70%. The optimal air velocity, 2.5 m/s, is identified in terms of the heat transfer rate and airside heat transfer coefficient of the MHE. It is also found that the heat transfer rate and overall heat transfer coefficient increase as the air velocity increases from 1.5 to 2.5 m/s and decreases above 2.5 m/s. Furthermore, a large amount of condensate accumulates on the MHE surface lowering the MHE heat transfer. The inclined installation angle of the MHE in the wind tunnel effectively enhances heat transfer performance on the MHE surface. The experimental results provide useful information for reducing condensate accumulation and enhancing microchannel heat transfer.

Suggested Citation

  • Xiuli Liu & Hua Chen & Xiaolin Wang & Gholamreza Kefayati, 2020. "Study on Surface Condensate Water Removal and Heat Transfer Performance of a Minichannel Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1065-:d:326698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shao, Liang-Liang & Yang, Liang & Zhang, Chun-Lu, 2010. "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions," Applied Energy, Elsevier, vol. 87(4), pages 1187-1197, April.
    2. Li, L.T. & Wang, W. & Sun, Y.Y. & Feng, Y.C. & Lu, W.P. & Zhu, J.H. & Ge, Y.J., 2014. "Investigation of defrosting water retention on the surface of evaporator impacting the performance of air source heat pump during periodic frosting–defrosting cycles," Applied Energy, Elsevier, vol. 135(C), pages 98-107.
    3. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    4. Mohammed, H.A. & Bhaskaran, G. & Shuaib, N.H. & Saidur, R., 2011. "Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1502-1512, April.
    5. Jan Wajs & Michał Bajor & Dariusz Mikielewicz, 2019. "Thermal-Hydraulic Studies on the Shell-and-Tube Heat Exchanger with Minijets," Energies, MDPI, vol. 12(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Sun & Yiping Lu & Jianfei Tong & Youlian Lu & Tianjiao Liang & Lingbo Zhu, 2021. "Study on the Convective Heat Transfer and Fluid Flow of Mini-Channel with High Aspect Ratio of Neutron Production Target," Energies, MDPI, vol. 14(13), pages 1-15, July.
    2. Wan-Ling Hu & Ai-Jun Ma & Yong Guan & Zhi-Jie Cui & Yi-Bo Zhang & Jing Wang, 2021. "Experimental Study of the Air Side Performance of Fin-and-Tube Heat Exchanger with Different Fin Material in Dehumidifying Conditions," Energies, MDPI, vol. 14(21), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    2. Cheng, Jia-Hao & Cao, Xiang & Shao, Liang-Liang & Zhang, Chun-Lu, 2023. "Performance evaluation of a novel heat pump system for drying with EVI-compressor driven precooling and reheating," Energy, Elsevier, vol. 278(PB).
    3. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    4. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    5. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.
    6. Jagirdar, Mrinal & Lee, Poh Seng, 2017. "A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal," Applied Energy, Elsevier, vol. 185(P2), pages 2232-2244.
    7. Ziqi Zhang & Wanyong Li & Junye Shi & Jiangping Chen, 2016. "A Study on Electric Vehicle Heat Pump Systems in Cold Climates," Energies, MDPI, vol. 9(11), pages 1-11, October.
    8. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    9. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    10. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    12. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    13. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    14. Wu, Zan & Sundén, Bengt, 2014. "On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 11-27.
    15. Mohammed Adham, Ahmed & Mohd-Ghazali, Normah & Ahmad, Robiah, 2013. "Thermal and hydrodynamic analysis of microchannel heat sinks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 614-622.
    16. Najiha, M.S. & Rahman, M.M. & Yusoff, A.R., 2016. "Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1008-1031.
    17. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    18. Wu, Jianghong & Ouyang, Guang & Hou, Puxiu & Xiao, Haobin, 2011. "Experimental investigation of frost formation on a parallel flow evaporator," Applied Energy, Elsevier, vol. 88(5), pages 1549-1556, May.
    19. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    20. Magdalena Piasecka & Beata Maciejewska & Paweł Łabędzki, 2020. "Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software," Energies, MDPI, vol. 13(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1065-:d:326698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.