IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7030-d665609.html
   My bibliography  Save this article

Experimental Study of the Air Side Performance of Fin-and-Tube Heat Exchanger with Different Fin Material in Dehumidifying Conditions

Author

Listed:
  • Wan-Ling Hu

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    Key Laboratory of Railway Vehicle Thermal Engineering, Lanzhou Jiaotong University, Ministry of Education of China, Lanzhou 730070, China)

  • Ai-Jun Ma

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yong Guan

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China)

  • Zhi-Jie Cui

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yi-Bo Zhang

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jing Wang

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

Under dehumidifying conditions, the condensed water will directly affect the heat transfer and resistance characteristics of a fin-and-tube heat exchanger. The geometrical form of condensed water on fin surfaces of three different fin materials (i.e., copper fin, aluminum fin, and aluminum fin with hydrophilic layer) in a fin-and-circular-tube heat exchanger was experimentally studied in this paper. The effect of the three different fin materials on heat transfer and friction performance of the heat exchanger was researched, too. The results show that the condensation state on the surface of copper fin and aluminum fin are dropwise condensation. The condensation state on the surface of the aluminum fin with the hydrophilic layer is film condensation. For the three different material fins, increasing the air velocity ( u a,in ) and relative humidity ( RH in ) of the inlet air can enhance the heat transfer of the heat exchanger. Friction factor ( f ) of the three different material fins decreases with the increase of u a,in , however, increases with the increase of RH in . At the same u a,in or RH in , Nusselt number ( Nu ) of the copper fin heat exchanger is the largest and Nu of the aluminum fin with hydrophilic layer is the smallest, f of the aluminum fin heat exchanger is the largest and f of the aluminum fin with hydrophilic layer is the smallest. Under the identical pumping power constrain, the comprehensive heat transfer performance of the copper fin heat exchanger is the best for the studied cases.

Suggested Citation

  • Wan-Ling Hu & Ai-Jun Ma & Yong Guan & Zhi-Jie Cui & Yi-Bo Zhang & Jing Wang, 2021. "Experimental Study of the Air Side Performance of Fin-and-Tube Heat Exchanger with Different Fin Material in Dehumidifying Conditions," Energies, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7030-:d:665609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    2. Marcin Łęcki & Dariusz Andrzejewski & Artur N. Gutkowski & Grzegorz Górecki, 2021. "Study of the Influence of the Lack of Contact in Plate and Fin and Tube Heat Exchanger on Heat Transfer Efficiency under Periodic Flow Conditions," Energies, MDPI, vol. 14(13), pages 1-25, June.
    3. Xiuli Liu & Hua Chen & Xiaolin Wang & Gholamreza Kefayati, 2020. "Study on Surface Condensate Water Removal and Heat Transfer Performance of a Minichannel Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhai & Xu Zhao & Guanghui Xue & Zhifeng Dong, 2023. "Study on Heat Transfer Performance and Parameter Improvement of Gravity-Assisted Heat Pipe Heat Transfer Unit for Waste Heat Recovery from Mine Return Air," Energies, MDPI, vol. 16(17), pages 1-17, August.
    2. Jeonggyun Ham & Gonghee Lee & Dong-wook Oh & Honghyun Cho, 2021. "Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2021. "Thermal Calculations of Four-Row Plate-Fin and Tube Heat Exchanger Taking into Account Different Air-Side Correlations on Individual Rows of Tubes for Low Reynold Numbers," Energies, MDPI, vol. 14(21), pages 1-13, October.
    2. Mustansar Hayat Saggu & Nadeem Ahmed Sheikh & Usama Muhammad Niazi & Muhammad Irfan & Adam Glowacz, 2020. "Predicting the Structural Reliability of LNG Processing Plate-Fin Heat Exchanger for Energy Conservation," Energies, MDPI, vol. 13(9), pages 1-22, May.
    3. Hyung Ju Lee & Jaiyoung Ryu & Seong Hyuk Lee, 2019. "Influence of Perforated Fin on Flow Characteristics and Thermal Performance in Spiral Finned-Tube Heat Exchanger," Energies, MDPI, vol. 12(3), pages 1-13, February.
    4. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.
    5. Shehryar Ishaque & Man-Hoe Kim, 2019. "Seasonal Performance Investigation for Residential Heat Pump System with Different Outdoor Heat Exchanger Designs," Energies, MDPI, vol. 12(24), pages 1-22, December.
    6. Peng Sun & Yiping Lu & Jianfei Tong & Youlian Lu & Tianjiao Liang & Lingbo Zhu, 2021. "Study on the Convective Heat Transfer and Fluid Flow of Mini-Channel with High Aspect Ratio of Neutron Production Target," Energies, MDPI, vol. 14(13), pages 1-15, July.
    7. Mirosław Neska & Mirosław Mrozek & Marta Żurek-Mortka & Andrzej Majcher, 2021. "Analysis of the Parameters of the Two-Sections Hot Side Heat Exchanger of the Module with Thermoelectric Generators," Energies, MDPI, vol. 14(16), pages 1-15, August.
    8. Krzysztof Rajski & Jan Danielewicz, 2023. "Heat Transfer and Heat Recovery Systems," Energies, MDPI, vol. 16(7), pages 1-6, April.
    9. Sadeghianjahromi, Ali & Wang, Chi-Chuan, 2021. "Heat transfer enhancement in fin-and-tube heat exchangers – A review on different mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7030-:d:665609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.