Author
Listed:
- Calos Martínez-Lara
(Department of Thermal Engineering and Fluids, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain)
- Alejandro López-Belchí
(Applied Physics and Naval Technology Department, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Murcia, Spain)
- Francisco Vera-García
(Department of Thermal Engineering and Fluids, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain)
Abstract
This study presents a comprehensive experimental investigation into the frictional pressure drop of two-phase flows—boiling and condensation—in horizontal minichannels, emphasizing its impact on the energy efficiency of vapor compression systems. A total of 3553 data points were obtained using six low-GWP refrigerants (R32, R134a, R290, R410A, R513A, and R1234yf) across a wide range of operating conditions in multiport aluminum tubes with hydraulic diameters of 0.715 mm and 1.16 mm. The dataset covers mass fluxes from 200 to 1230 kg m − 2 s − 1 , saturation temperatures between 5 °C and 55 °C, and vapor qualities from 0.05 to 0.95. Results showed a strong dependence of frictional pressure gradient on vapor quality, mass flux, and channel size. Boiling flows generated higher frictional losses than condensation, and high-density refrigerants such as R32 exhibited the largest pressure penalties, which can directly translate into increased compressor power demand. Conversely, higher saturation temperatures were associated with lower frictional losses, highlighting the role of thermophysical properties in improving energy performance. Additionally, an inverse correlation between saturation temperature and frictional pressure gradient was observed, attributed to variations in thermophysical properties such as viscosity and surface tension. Existing correlations from the literature were assessed against the experimental dataset, with notable deviations observed in several cases, particularly for R134a under high-quality conditions. Consequently, a new empirical correlation was developed for predicting the frictional pressure drop in two-phase flow through minichannels. The proposed model, formulated using a power-law regression approach and incorporating dimensionless parameters, achieved better agreement with the experimental data, reducing prediction error to within ±20%, improving the accuracy for the majority of cases. This work provides a robust and validated dataset for the development and benchmarking of predictive models in compact heat exchanger design. By enabling the more precise estimation of two-phase pressure drops in compact heat exchangers, the findings support the design of refrigeration, air-conditioning, and heat pump systems with minimized flow resistance and reduced auxiliary energy consumption. This contributes to lowering compressor workload, improving coefficient of performance (COP), and it ultimately advances the development of next-generation cooling technologies with enhanced energy efficiency.
Suggested Citation
Calos Martínez-Lara & Alejandro López-Belchí & Francisco Vera-García, 2025.
"Boiling and Condensing Two-Phase Frictional Pressure Drop Within Minichannel Tubes—Comparison and New Model Development Based on Experimental Measurements,"
Energies, MDPI, vol. 18(18), pages 1-28, September.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:18:p:5010-:d:1754175
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:5010-:d:1754175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.