IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2291-d166737.html
   My bibliography  Save this article

Visualization Study of Startup Modes and Operating States of a Flat Two-Phase Micro Thermosyphon

Author

Listed:
  • Liangyu Wu

    (School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yingying Chen

    (School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

  • Suchen Wu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Mengchen Zhang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Weibo Yang

    (School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

  • Fangping Tang

    (School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

The flat two-phase thermosyphon has been recognized as a promising technique to realize uniform heat dissipation for high-heat-flux electronic devices. In this paper, a visualization experiment is designed and conducted to study the startup modes and operating states in a flat two-phase thermosyphon. The dynamic wall temperatures and gas–liquid interface evolution are observed and analyzed. From the results, the sudden startup and gradual startup modes and three quasi-steady operating states are identified. As the heat load increases, the continuous large-amplitude pulsation, alternate pulsation, and continuous small-amplitude pulsation states are experienced in sequence for the evaporator wall temperature. The alternate pulsation state can be divided into two types of alternate pulsation: lengthy single-large-amplitude-pulsation alternated with short multiple-small-amplitude-pulsation, and short single-large-amplitude-pulsation alternated with lengthy multiple-small-amplitude alternate pulsation state. During the continuous large-amplitude pulsation state, the bubbles were generated intermittently and the wall temperature fluctuated cyclically with a continuous large amplitude. In the alternate pulsation state, the duration of boiling became longer compared to the continuous large-amplitude pulsation state, and the wall temperature of the evaporator section exhibited small fluctuations. In addition, there was no large-amplitude wall temperature pulsation in the continuous small-amplitude pulsation state, and the boiling occurred continuously. The thermal performance of the alternate pulsation state in a flat two-phase thermosyphon is inferior to the continuous small-amplitude pulsation state but superior to the continuous large-amplitude pulsation state.

Suggested Citation

  • Liangyu Wu & Yingying Chen & Suchen Wu & Mengchen Zhang & Weibo Yang & Fangping Tang, 2018. "Visualization Study of Startup Modes and Operating States of a Flat Two-Phase Micro Thermosyphon," Energies, MDPI, vol. 11(9), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2291-:d:166737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    2. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    3. Sohel Murshed, S.M. & Nieto de Castro, C.A., 2017. "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 821-833.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfei Liu & Xiaotian Han & Chaoqun Shen & Feng Yao & Mengchen Zhang, 2018. "Experimental Study on the Evaporation and Condensation Heat Transfer Characteristics of a Vapor Chamber," Energies, MDPI, vol. 12(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Eui-Hyeok Song & Kye-Bock Lee & Seok-Ho Rhi & Kibum Kim, 2020. "Thermal and Flow Characteristics in a Concentric Annular Heat Pipe Heat Sink," Energies, MDPI, vol. 13(20), pages 1-15, October.
    4. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    5. Hosain, Md Lokman & Bel Fdhila, Rebei & Daneryd, Anders, 2016. "Heat transfer by liquid jets impinging on a hot flat surface," Applied Energy, Elsevier, vol. 164(C), pages 934-943.
    6. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    7. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    8. Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
    9. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    10. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    13. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    14. Wang, Ji-Xiang & Li, Yun-Ze & Li, Jia-Xin & Li, Chao & Xiong, Kai & Ning, Xian-Wen, 2018. "Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector," Energy, Elsevier, vol. 158(C), pages 512-523.
    15. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    16. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    17. Bonilla-Campos, Iñigo & Nieto, Nerea & del Portillo-Valdes, Luis & Manzanedo, Jaio & Gaztañaga, Haizea, 2020. "Energy efficiency optimisation in industrial processes: Integral decision support tool," Energy, Elsevier, vol. 191(C).
    18. Zhang, Yaxi & Zhu, Na & Zhao, Xudong & Luo, Zhenyu & Hu, Pingfang & Lei, Fei, 2023. "Energy performance and enviroeconomic analysis of a novel PV-MCHP-TEG system," Energy, Elsevier, vol. 274(C).
    19. Yanfei Liu & Xiaotian Han & Chaoqun Shen & Feng Yao & Mengchen Zhang, 2018. "Experimental Study on the Evaporation and Condensation Heat Transfer Characteristics of a Vapor Chamber," Energies, MDPI, vol. 12(1), pages 1-13, December.
    20. Delpech, Bertrand & Axcell, Brian & Jouhara, Hussam, 2019. "Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln," Energy, Elsevier, vol. 170(C), pages 636-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2291-:d:166737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.